ются многие сотни работ, включая целые книги. И это не случайно. Поскольку эта аксиома выбора связана с более фундаментальными положениями математики, чем аксиома параллельности в геометрии, то непринятие ее привело бы к гораздо более глубокой перестройке традиционных представлений.
Последствия такого потрясения могли затронуть не только математику, но и вообще наши научные взгляды. Подчеркивая важность этой аксиомы и распространенность ее в математических рассуждениях, Пуанкаре выражает мнение о безнадежности попыток Рассела доказать аксиому выбора. По его мнению, она представляет собой априорное синтетическое суждение.
Пуанкаре явился инициатором современной постановки проблемы непредикативности. В качестве непредикативных определений он рассматривает определения, построенные по принципу порочного круга, когда рассуждение, приводящее к требуемому результату, само опирается на то, что с его помощью нужно определить. Наиболее полно свои взгляды на непредикативные определения Пуанкаре развил в статье «Логика бесконечного», вошедшей в книгу «Последние мысли». Скрытым источником непредикативности и всех противоречий в теории множеств Пуанкаре считает основное понятие этой теории — актуальную бесконечность. Ее необходимо исключить из математического обихода. Только в устранении непредикативных определений видит он возможность выхода из парадоксов теории множеств.
Первый такой парадокс обнаружил в 1897 году итальянский математик Бурали-Форти. Хотя Бурали-Форти не сумел преодолеть обнаруженного им противоречия, дело еще не представлялось слишком серьезным. Казалось, что небольшой пересмотр доказательств теорем мог бы спасти положение. Не поколебала этой уверенности и еще одна антиномия, обнаруженная Кантором в 1899 году. Эти парадоксы как будто бы не затрагивали самой сути теории множеств и имели вид лишь досадных случайностей на фоне всеобщего признания учения Кантора.
Как раз в это время теория множеств «входит в моду» и ее методы все шире и шире применяются в различных областях математики. Триумфом новой теории стало ее признание на I Международном конгрессе математиков в Цюрихе (1897). В обстановке такого успеха парадокс Бурали-Форти выглядел как нелепая случайность. Однако вскоре по теории множеств был нанесен тяжелейший удар открытием парадокса Рассела. От этого парадокса уже нельзя было так просто отмахнуться, поскольку он был обнаружен не где-то в хитросплетениях абстрактных построений, а вытекал прямо из определения множества, данного Кантором. Не приходится удивляться той бурной реакции ученых, которую вызвало сообщение о парадоксе Рассела.
После открытия парадокса Рассела новые антиномии посыпались как из рога изобилия: парадокс Ришара (1905), парадокс Греллинга (1908) и другие. Оказалось даже, что в теории множеств имеет место парадокс «лжеца», известный еще древним грекам. Все это подорвало доверие к теории множеств среди ученых.
Если бы речь шла о парадоксах, затрагивающих какой-нибудь частный раздел математики, то можно было бы «отсечь» этот загнивший росток от «здорового» математического древа. Но с теорией множеств так нельзя было поступить, по тому что она стала основанием практически всей математики. Ее понятия и методы широко использовались в самых различных областях математики, многие из разделов которой перестраивались на теоретико-множественной основе. Теория множеств превратилась в своего рода фундамент математики. Обнаружение парадоксов показало, что фундамент самого этого фундамента является весьма непрочным. Академик А. Д. Александров так характеризует создавшуюся тогда ситуацию: «Теоретико-множественная установка оказалась подорванной, и вместе с нею оказалось подорванным все стройное здание математики. В верхних его этажах шло энергичное строительство: кирпичики теорем, соединяемые цементом логики, укладывались в рамки уже определившихся разделов и воздвигались каркасы новых теорий, но в теоретико-множественном фундаменте обнаружились расширяющиеся трещины парадоксов и под ними зыбучие пески и топи логических трудностей»[120].
Самые основы математики и логики оказались пораженными неразрешимыми противоречиями. Произошло крушение, казалось бы, незыблемых понятий и представлений. Налицо был кризис оснований математики. И даже не сами парадоксы говорят об этом кризисе. Гораздо более убедительно о кризисе свидетельствует тот факт, что попытки преодолеть антиномии выявили далеко идущие и неожиданные расхождения мнений по поводу самых основных математических понятий.
Этот кризис резко обострил борьбу между такими течениями как логицизм, интуиционизм и формализм. Выступления Пуанкаре против логицизма и допустимости актуальной бесконечности, разработка им учения о математической интуиции были одним из источников возникновения интуиционизма как одного из направлений в обосновании математики. Для сторонников интуиционизма характерно отвержение абстракции актуальной бесконечности и «чистых» теорем существования, а также неприятие неограниченного применения закона исключенного третьего. Интуиционисты рассматривают математические объекты как конструктивные. Большое внимание уделяется анализу роли интуиции в математическом познании.
Позиция Пуанкаре может рассматриваться как весьма близкая к интуиционизму. Близость идей Пуанкаре и основоположника интуиционизма Брауэра многие исследователи отражают даже в названиях взглядов Пуанкаре. Френкель и Бар-Хиллел определяют его позицию как ранний интуиционизм, Бет — как полуинтуиционизм. Сам Брауэр охарактеризовал Пуанкаре как одного из руководителей пред-интуиционистской школы[121].
В книгах, посвященных общим вопросам науки. Пуанкаре уделил большое внимание проблемам теоретической физики того времени, оказавшейся неспособной дать объяснение целому ряду новых экспериментальных фактов. Особый интерес представляют те главы, в которые были включены его официальные доклады на международных конгрессах. Так, в книге «Наука и гипотеза» излагается доклад Пуанкаре на Международном физическом конгрессе 1900 года, в котором дается глубокий анализ назначения теоретической физики и той роли, которую играют в науке различные по своей сущности гипотезы. Эти общие вопросы теории познания и сейчас сохраняют свое актуальное значение.
Физический конгресс 1900 года, проходивший в дни Всемирной парижской выставки, был первым международным форумом физиков. Откликнувшись на призыв французского Физического общества, в Париж съехались почти все знаменитости этой науки. Рабочие заседания конгресса начались с доклада Пуанкаре. «Опыт — единственный источник истины: только опыт может научить нас чему-либо новому, только он может вооружить нас достоверностью», — провозглашает Пуанкаре (с. 116). Но уже в следующей фразе он ставит вопрос: если опыт есть все, то где же место теоретической физики? И автор последовательно и обстоятельно развивает свои взгляды на эту проблему.
«…Всякое обобщение до известной степени предполагает веру в единство и простоту природы. Допущение единства не представляет затруднений» (с. 120); Но вот тезис — «природа любит простоту» — постоянно оспаривается и подвергается сомнению. Между тем, по твердому убеждению Пуанкаре, «те, которые не верят, что законы природы должны быть просты, все же часто бывают вынуждены поступать так, как если бы они разделяли эту веру. Они не могли бы совершенно отрешиться от этой необходимости, не разрушая тем самым всякой возможности обобщения, а следовательно, и науки» (с. 120). Ведь если не руководствоваться критерием простоты, то невозможно выбрать какое-либо теоретическое обобщение из бесчисленного множества различных вполне осуществимых обобщений.
«Изучая историю науки, — отмечает Пуанкаре, — мы замечаем два явления, которые можно назвать взаимно противоположными: то за кажущейся сложностью скрывается простота, то, напротив, видимая простота на самом деле таит в себе чрезвычайную сложность» (с. 121). Но независимо от того, какая из этих ситуаций реализуется на самом деле, в науке, по мнению докладчика, в любом случае, следует предпочесть сначала простейшее обобщение. В дальнейшем более точные и совершенные опыты либо подтвердят истинность этой простоты, либо вынудят ученых пойти на усложнение и выбрать другое, более, истинное обобщение. Иначе говоря, докладчик утверждает, что во всех случаях надо исходить из гипотезы простоты природы. Этот принцип построения физических теорий, который впоследствии стали называть «принципом простоты», особенно важно было уяснить в период глубокого кризиса физики, когда перед учеными встала проблема обобщения совершенно новых экспериментальных фактов и построения новых физических теорий.
Вслед за этим Пуанкаре рассмотрел различные типы гипотез, используемых в физике. Говоря о физических гипотезах, допускающих непосредственно экспериментальную проверку, он особо подчеркнул принципиальную важность того случая, когда гипотеза ученого оказывается опровергнутой опытом. «…Физик, который пришел к отказу от одной из своих гипотез, должен был бы радоваться, потому что тем самым он нашел неожиданную возможность открытия, — говорит Пуанкаре. — Я предполагаю, что его гипотеза не была выдвинута необдуманно, что она принимала в расчет все известные факторы, могущие помочь раскрыть явление! Если она не оправдывается, то это свидетельствует о чем-то неожиданном, необыкновенном; это значит, что предстоит найти нечто неизвестное, новое» (с. 124).
К особо опасным гипотезам Пуанкаре отнес те из них, которые принимаются неосознанно и незамеченными проникают в систему научных знаний.
Некоторые гипотезы докладчик назвал безразличными. Они никак не влияют на результат теоретического предсказания, а привлекаются либо из-за слабости человеческого разума, испытывающего затруднения в толковании некоторых явлений без вспомогательных представлений, либо для того, чтобы облегчить математическое решение задачи. «Этого рода безразличные гипотезы никогда не представляют опасности, лишь бы только природа их была ясно понимаема. Они могут быть полезными то в качестве вычислительного приема, то как некоторая конкретная опора для нашей мыслительной способности. Поэтому нет оснований их осуждать» (с. 126). К таким гипотезам Пуанкаре причислил предположение о непрерывности материи или противоположную ему гипотезу об атомарном ее строении, а также все предположения о физических свойствах «тонких субстанций, которые под именем эфира или под каким-либо другим именем во все времена играли столь значительную роль в физических теориях» (с. 136). Эфир, наделяемый механическими свойствами, он уподобляет некогда принятому в науке «теплороду» и ставит под сомнение его истинное существование. «Гипотезам этого рода свойствен лишь метафорический смысл… — утверждает Пуанкаре. — Они могут быть полезны, как средство достигнуть умственного удовлетворения» (с. 133).