О неслышимых звуках — страница 15 из 25

рерывистая струя воздуха, которую рассекают зубцы вращающегося ротора. В воздухе, окружающем сирену, образуются чередующиеся сжатия и разрежения, то есть возникнет звуковая волна. Ультразвуковая сирена с диском, имеющим 110 зубцов, совершая 250 оборотов в секунду, создает волну с частотою, равной приблизительно 27 тысячам колебаний в секунду.


Рис. 43. Схема устройства ультразвуковой сирены

С помощью сирен можно получить чрезвычайно интенсивные звуковые и ультразвуковые колебания мощностью в несколько киловатт. Эта мощность настолько велика, что расположенный на пути звуковой волны кусок ваты через несколько секунд вспыхивает в результате превращения в теплоту поглощенной акустической энергии.

Предназначенные для очистки воздуха звуковые и ультразвуковые волны, полученные с помощью сирены, собираются в виде узкого луча специальными рефлекторами, напоминающими зеркала прожекторов (рис. 44). Сирена устанавливается на вершине специальной башни, и звуковая волна направляется сверху вниз.


Рис. 44. Рефлектор для фокусировки ультразвуковых волн

Схема установки для улавливания печной сажи изображена на рис. 45. Смесь, в результате сгорания которой получается сажа, из подогревателя 1 направляется в реакционную камеру 2. Образовавшаяся сажа, пройдя холодильник 3, попадает в звуковую колонну 4, на вершине которой и находится сирена.


Рис. 45. Схема установки для ультразвукового осаждения сажи

Установлено, что увеличивать размеры частиц следует только до тех пор, пока скорость их оседания не достигнет приблизительно полусантиметра в секунду. Не имеет смысла добиваться дальнейшего увеличения частиц потому, что крупные агрегаты в звуковой волне будут вновь измельчаться.

Воздух с укрупненными частицами поступает в обычные пылеуловители (циклоны) 5, где и осаждается основное количество сажи.

Частота звука, при которой осаждение частиц происходит особенно эффективно, зависит от их размера, и ее следует находить опытным путем.

Звуковым осаждением выгодно пользоваться, если диаметр улавливаемых частиц меньше одной тысячной доли сантиметра, а содержание их не ниже 4–5 граммов на кубический метр.

Как сообщает американская печать, ультразвуковые сирены с успехом применили в технике для покрытия глазурью изделий из фарфора и керамики. Предполагают, что в этом случае действие сирен не ограничивается только распылением, играет роль также и то, что под влиянием ультразвуковых волн вещество нагревается.

Естественно, возникает вопрос: нельзя ли с помощью ультразвука ускорить осаждение твердых частиц, взвешенных в жидкости. Этот вопрос практически очень важен для многих производств, на которых приходится выжидать длительное время, пока полученный продукт, загрязненный примесью твердых частиц, осветлится настолько, что его можно будет направить потребителю. Кроме того, часто сточные воды заводов приходится первоначально направлять в отстойники, в которых оседают вредные примеси, находящиеся в воде в виде твердых частиц, и лишь после этого спускать воду в реку. Если осаждение частиц ускорится, то размеры необходимых для производства отстойников уменьшатся, сократится и время, в течение которого уже готовый продукт сохраняется на заводе для осветления. Как можно было ожидать, ультразвуковые и звуковые колебания действительно ускоряют осаждение твердых частиц. Практическое использование этого способа тормозится в основном отсутствием ясности в вопросе о том, какие частоты и мощности звуковых колебаний необходимы для успешного осаждения частиц и какой будет экономический эффект от применения ультразвука.


Ультразвуки и металлургия

Частично об использовании ультразвуков при обработке металлов и об их влиянии на свойства металлов уже рассказано. Однако область применения ультразвуков непрерывно расширяется, и наш рассказ будет неполным, если не упомянуть хотя бы кратко о тех воздействиях ультразвука на металл, которые, возможно, в недалеком будущем найдут себе практическое применение.

Звуковые колебания помогают освободить расплавленный металл от обычно присутствующего в нем воздуха. На рис. 46 показаны разрезы двух образцов сплава магния с алюминием. Левый слиток затвердел в обычных условиях, а правый — при озвучивании. Хорошо видны большие воздушные пузыри, возникшие в неозвученном слитке. Образец, который до затвердевания озвучивался в течение часа, отличается большей однородностью и отсутствием воздушных пузырей. Естественно, что механические свойства такого слитка гораздо выше, чем того, в котором имеются воздушные пузырьки.


Рис. 46. Обезгаживание[2] металлов при озвучивании

Технологи заметили, что если в расплавленный металл добавить сравнительно небольшое количество мелко раздробленных частиц другого металла, например свинца в алюминий, и дать затвердеть образовавшейся металлической эмульсии, то получается сплав с ценными технологическими свойствами. Подобную металлическую эмульсию можно получить или химическим способом, или при помощи ультразвукового дробления. На рис. 47 изображены разрезы двух образцов алюминия, в которые вкраплены мельчайшие зернышки свинца. Левый образец получен химическим способом, правый — при помощи ультразвукового дробления. Ясно видно, что с помощью ультразвука достигается гораздо более мелкое дробление свинца и более равномерное распределение его в алюминии. Иногда с помощью ультразвука достигается столь мелкое дробление свинца, что даже повторное плавление не вызывает разделения металлов.


Рис. 47. Диспергирование свинца в алюминии

В некоторых случаях озвучивание значительно ускоряет важные для металлургии процессы, дает возможность осуществить их при более низких температурах.

При медленном охлаждении предварительно нагретых образцов стали происходит изменение кристаллической структуры металла. В определенных условиях озвучивание нагретого, но твердого образца стали вызывает уменьшение среднего размера микрокристалликов и улучшение механических свойств металла. В других условиях, наоборот, наблюдается рост более крупных кристаллов. Выяснение природы действия ультразвука на процессы, происходящие в металлах, будет способствовать более широкому использованию его в металлургической промышленности для получения высококачественных металлов и сплавов и интенсификации металлургических процессов.,


Ультразвук помогает интенсифицировать производство

Ультразвуки обладают способностью ускорять, или, как говорят, интенсифицировать, многие важные для промышленности операции. На химических заводах сплошь и рядом приходится извлекать ценные вещества, растворенные в какой-либо жидкости. Иногда для этого жидкость смешивают с другой жидкостью, которая в ней не растворяется, но в которой растворяется извлекаемое вещество. Такой процесс называют экстракцией, он осуществляется в экстракционных колоннах, снабженных специальной насадкой или наполненных фарфоровыми кольцами.

Более легкую жидкость подводят к колонне снизу, более тяжелую — сверху. Проходя внутри колонны навстречу друг другу, жидкости хорошо перемешиваются, и растворенное вещество переходит из одной жидкости в другую. Чем труднее экстрагируется вещество, тем дольше должны жидкости находиться в соприкосновении друг с другом и тем выше должна быть колонна. Оказалось, что если заставить колонну совершать колебания, скорость экстракции значительно возрастет. Колебания колонны и наполняющей ее жидкости настолько ускоряют экстракцию, что высота колонны, необходимая для практически полного извлечения вещества, сокращается почти в три раза.

Еще эффективнее действуют ультразвуки в тех случаях, когда приходится извлекать ценные вещества, содержащиеся в клетках организмов животных и растений. С их помощью удается увеличить извлечение ценных белковых веществ из клеток дрожжей, ускорить выделение активных ферментов. Это свойство ультразвуков уже нашло себе практическое применение в пивоварении. Озвучивание горячей смеси, в которую добавлен хмель, позволяет, как утверждают работники предприятий, производящих пиво, сэкономить до 40 процентов хмеля в результате более полного извлечения из него ценных для пивоварения веществ.

Большие возможности для использования ускоряющего действия ультразвуков открываются в кожевенной промышленности. Прежде чем превратиться в красивые туфли или ботинки, шкура животного должна пройти сложную обработку: ее моют водой и щелочами, с нее удаляются волосы, кожу дубят, окрашивают и т. д. Как правило, большинство этих процессов протекает очень медленно. Ультразвуки могут их ускорять во много раз. Так, например, опытное дубление образца кожи, которое производилось при одновременном действии ультразвука, потребовало всего 18 часов, в то время как на контрольном образце, который не озвучивался, процесс закончился только через 114 часов. Озвучивание обеспечивает равномерную обработку всего образца. Можно предполагать, что ультразвуковые колебания будут ускорять и другие процессы кожевенного производства.

Опыты показали, что ультразвуковые и звуковые колебания ускоряют окраску различных тканей и поэтому могут использоваться для интенсификации процессов крашения. В некоторых случаях можно с равным успехом пользоваться как ультразвуковыми, так и звуковыми колебаниями, а в некоторых случаях, в частности при крашении трудноокрашиваемых тканей, только ультразвуковыми. Применение звуковых колебаний для ускорения крашения в больших промышленных масштабах пока затрудняется отсутствием соответствующих аппаратов и необходимостью выяснить некоторые технические и экономические вопросы.

Чем объясняется ускоряющее действие ультразвука, точно еще не выяснено. Вероятно, оно связано с изменениями в том слое, где соприкасаются две жидкости или жидкость и твердое тело. Эти же изменения, возможно, являются причиной увеличения скорости отдачи тепла нагретым телом окружающему его воздуху, если воздух заставить совершать звуковые колебания. Как показывают опыты, скорость отдачи тепла, при прочих равных условиях, увеличивается в несколько раз при обдувке нагретого тела воздухом, совершающим звуковые колебания. Правда, при ускорении теплоотдачи, возможно, играют значительную роль также те течения воздуха, которые возникают в нем при распространении интенсивных звуковых колебаний. Отдача тепла повышается и в том случае, если заставить колебаться само нагретое тело. Как предполагают, при этом прилегающий к телу нагретый слой растягивается, его граница как бы увеличивается. В зарубежной литературе есть сведения, что способность звуковых колебаний увеличивать теплоотдачу уже находит себе практическое применение.