О неслышимых звуках — страница 19 из 25


Рис. 55. Звуковое изображение раковой опухоли

Не всегда, однако, врач может воспользоваться описанным прибором. Так, например, при исследовании мозга приходится снимать часть черепной коробки с таким расчетом, чтобы резиновая перепонка камеры, в которую помещен излучатель, пришла в непосредственное соприкосновение с мозгом. Если бы в этом случае излучатель, исследуя ткань, перемещался по ее поверхности, пришлось бы удалять значительную часть черепа. В этом случае удобнее поступить так, как поступает наблюдатель, стоящий на холме и осматривающий горизонт. Ведь не перемещается же он при этом вдоль горизонта. Наблюдатель просто поворачивает голову и присматривается к различным участкам горизонта. Такой способ обследования также используется при ультразвуковом обнаружении опухолей в человеческом организме. В аппаратах этого типа специальный механизм заставляет излучатель ультразвуковых импульсов непрерывно поворачиваться, посылая сигналы внутрь организма под разными углами. Конструктивно такого рода приборы более сложны, но зато они позволяют исследовать относительно большие участки организма без перемещения излучателя вдоль обследуемой поверхности.

Как показывает практика, злокачественные опухоли часто возникают в желудке. Поэтому американские ученые сконструировали аппарат специально для исследования желудка. В этом аппарате миниатюрный излучатель ультразвуковых сигналов укрепляется в конце длинной трубки-зонда из мягкой резины. Внутри трубки проходят провода, соединяющие излучатель с остальной аппаратурой, а также устройство, управляющее излучателем.

Излучатель находится в камере из тончайшей резины. Человек, которому необходимо исследовать желудок, проглатывает зонд с излучателем. Камера наполняется водой. Гибкая резиновая пленка плотно прилегает к стенкам желудка, обеспечивая прохождение ультразвуковых сигналов и давая возможность исследовать особенности ткани стенок желудка. Принцип работы этого аппарата напоминает принцип работы ультразвукового эхолота. Однако если в случае эхолота мы имеем дело с океаном и интересуемся только профилем дна, то здесь путь ультразвукового луча ограничен всего небольшой частью человеческого организма, но зато мы пытаемся проникнуть, если так можно выразиться, глубже дна — исследовать строение ткани человеческого организма.

С помощью ультразвукового исследования удается обнаруживать возникновение не только злокачественных опухолей, но и других болезненных изменений ткани. Слабые ультразвуки безвредны для организма, однако мощные ультразвуковые колебания вызывают глубокое разрушение живой ткани. Это, казалось бы, губительное действие ультразвука было предложено использовать в экспериментальной биологии и медицине в конечном счете на благо человека. Замечательные результаты, достигнутые в этом направлении, тесно связаны с возможностью получения ультразвуковой волны в виде узкого луча. Фокусируя в одной точке ультразвуковые лучи, идущие от нескольких излучателей большой мощности, можно создать сравнительно резко ограниченную область, в которой действие ультразвука на живую ткань будет исключительно сильным. Таким способом врач может воздействовать и, если это необходимо, даже разрушить отдельные участки ткани внутренней части головного мозга, относительно слабо затрагивая при этом клетки, сосредоточенные в коре головного мозга, которая играет такую важную роль в высшей нервной деятельности животных и человека. Подобные исследования пока ограничены опытами над животными, но нет оснований сомневаться в том, что развитие их может иметь исключительно большое значение для человека.

Несомненно, что в ближайшем будущем ультразвуковые приборы, предназначенные для исследования человеческого организма и воздействия на него, будут значительно усовершенствованы и сделаются ценными помощниками врачей при определении заболевания, выборе способов лечения болезни, а иногда и воздействия на больной организм.


Как ультразвук помогает исследовать строение земли

Изучение строения земли — увлекательная область знания. Но проникнуть в недра земли очень трудно: бурением мы можем уйти лишь на глубину, ничтожную по сравнению с размерами земли. Узнать же тайны строения более глубоких слоев позволяет изучение явлений, сопровождающих землетрясения. Талантливый русский ученый Б. Б. Голицын говорил, что землетрясение подобно «фонарю, который зажигается на короткое время и освещает нам внутренность земли, позволяя тем самым рассмотреть то, что там происходит».

И действительно, изучение волн, возникающих во время землетрясения в земной коре, помогает узнать строение земли. Иногда ученые искусственно вызывают подобные волны, производя взрыв. И в этом случае характер распространения волн позволяет проникнуть в толщу земли, произвести разведку полезных ископаемых.

С. Я. Соколов предложил использовать методы ультразвуковой дефектоскопии для изучения на модели распространения волн в земной поверхности.

Ученый рассчитал, что если приготовить модель земного шара, то, направляя наклонно к ее поверхности ультразвуковую волну, можно вызвать возникновение волн, аналогичных тем, которые наблюдаются при землетрясениях. Чтобы характер распространения волн на модели соответствовал тому, что мы наблюдаем на земле, необходимо длину волны уменьшить во столько же раз, во сколько модель меньше земли. Практически для этой цели приходится пользоваться волнами с частотами от сотен тысяч до десятков миллионов герц.

Придав модели рельеф, соответствующий поверхности земли, можно изучить распространение волн в земной коре и проверить предположения о ее строении.

Наблюдение особенностей распространения в толще земли волн, возникающих при землетрясениях, привело ученых к мысли о том, что на глубине приблизительно 2900 километров расположено земное ядро, вещество которого по составу резко отличается от вещества внешних оболочек земли. Сквозь земное ядро могут проходить только продольные волны, поперечных волн земное ядро не пропускает. Однако объяснить, почему возникло такое резкое разделение в веществе земли, затруднительно, и поэтому наряду с гипотезой о существовании земного ядра было высказано предположение о том, что химически строение земного шара однородно, особенности же распространения волн в толще земли объясняются изменением свойств вещества земли под влиянием высоких давлений, существующих в ее толще. Для проверки возможности подобного объяснения из органического стекла была изготовлена модель земли и на этой модели изучено распространение ультразвуковых волн, воспроизводящих волны, возникающие при землетрясении. Опыты производились при различных температурах: как при более низких, чем температура размягчения органического стекла, так и при более высоких. В процессе этих опытов удалось воспроизвести особенности распространения волн в земной толще, не прибегая к скачкообразному изменению плотности и состава модели, а меняя лишь вязкость вещества, из которого она была изготовлена. Результаты этих опытов рассматриваются как подтверждение гипотезы об однородном строении земного шара.

Вероятно, в недалеком будущем ультразвуковое моделирование найдет себе иные, еще более интересные применения для изучения строения земли.


Ультразвук контролирует химические превращения

До сих пор мы рассказывали о таких применениях ультразвукового контроля, при которых свойства исследуемого вещества не изменялись. Но мы знаем, что скорость распространения звука зависит от свойств вещества, и поэтому если эти свойства будут изменяться, то одновременно будет изменяться и скорость звука. Это позволяет использовать ультразвуки для изучения различных физико-химических процессов.

Особенно большое практическое значение может иметь применение ультразвука для проверки степени затвердевания бетона. Строителям важно знать, когда этот процесс закончится. При исследовании твердеющего бетона пользуются как методом сквозного прозвучивания, так и импульсным эхо-методом. Применяемые аппараты напоминают обычные дефектоскопы. Ультразвуковые импульсы проникают в бетон на глубину до 30 метров, что позволяет исследовать очень большие сооружения.

По мере затвердевания бетона растет его прочность, а одновременно растет и скорость распространения в нем ультразвуковых колебаний. Измеряя скорость распространения ультразвука в бетоне и одновременно производя испытание бетона на прочность, ученые установили зависимость между этими величинами. Имея в руках график этой зависимости (рис. 56), строитель может непосредственно на строительной площадке проверить качество бетона. Для этого ультразвуковой излучатель прикладывают к бетонному сооружению и направляют в толщу бетона короткий сигнал. Одновременно с посылкой импульса на экране аппарата появляется отметка — зигзаг светового луча. Когда придет отраженный ультразвуковой сигнал, появится второй зигзаг, несколько отстоящий от первого. Расстояние между первым и вторым зигзагами соответствует времени между посылкой ультразвукового сигнала и приходом его эха. Зная размеры исследуемого объекта, легко вычислить скорость ультразвука и найти то наибольшее напряжение, которое может выдержать бетон при сжатии и которое характеризует его механические свойства.


Рис. 56. График для определения прочности бетона

Предположим, что скорость распространения ультразвука оказалась равной 4200 метрам в секунду. Восстановив перпендикуляр до пересечения с опытной кривой на рис. 56 и проведя из точки пересечения прямую, параллельную горизонтальной оси, найдем, что наибольшее напряжение, которое может выдержать бетон при сжатии, составит 360 килограммов на квадратный сантиметр. Для каждого сорта бетона зависимость между скоростью звука и прочностью материала должна устанавливаться опытным путем.

С помощью ультразвука были изучены массивные плотины, а также образцы бетона длиной от 20 сантиметров до 15 метров. В результате исследования удавалось обнаружить даже небольшие трещины и промерить глубину поверхностных трещин. Ультразвук помог определить упругие свойства недоступных для непосредственного осмотра частей сооружений, обнаружить участки, отличающиеся пониженной прочностью.