О неслышимых звуках — страница 23 из 25

5 и трубки катодного осциллографа 9.


Рис. 67. Движение электронного луча в ультразвуковом микроскопе

Согласно расчетам, в ультразвуковом микроскопе возможны увеличения в несколько десятков тысяч раз.

Для «освещения» рассматриваемого в ультразвуковой микроскоп предмета пригодны как непрерывные ультразвуковые волны, так и отдельные ультразвуковые импульсы.

Ультразвуковому микроскопу можно придать иные конструкции, сохранив принцип его действия. В одной из них ультразвуковое изображение получают на внешней поверхности пьезоэлектрической пластинки 1 (рис. 68), внутренняя поверхность которой освещается равномерно ультрафиолетовыми лучами 3. Под действием ультрафиолетовых лучей с внутренней поверхности пластинки, являющейся дном вакуумной трубки 2, вылетают электроны, которые ускоряются электрическим полем и, пройдя через специальные магнитные и электрические линзы, падают на флуоресцирующий экран 5. На экране будет видно изображение источника электронов — пьезоэлектрической пластинки 1. Выбивание электронов ультрафиолетовыми лучами зависит от величины зарядов, возникших на пластинке под действием падающих на нее ультразвуковых колебаний. Распределение интенсивности последних в свою очередь определяется тем акустическим изображением, которое получается на приемной пластинке. Поэтому на экране 5 мы увидим увеличенным рассматриваемый предмет.


Рис. 68. Схема ультразвукового микроскопа с магнитной линзой

Не переставая совершенствовать свое изобретение, С. Я. Соколов значительно упростил конструкцию ультразвукового микроскопа.


Новая конструкция

Как и раньше, рассматриваемый предмет 2 помещается в жидкость 4 и «освещается» однородным ультразвуковым пучком, посылаемым кварцевой пластинкой 1 (рис. 69). Отразившись от предмета, ультразвуковые лучи попадают на зеркало 3, которое отбрасывает изображение рассматриваемого предмета на поверхность жидкости. Когда ультразвуковые лучи достигают поверхности жидкости, они вызывают появление на ней характерной ряби. Если пользоваться ультразвуковым лучом с малой длиной волны, рябь получается очень равномерной. Осветив поверхность жидкости косо падающим пучком света, можно отбросить на экран 6 изображение поверхности, на котором четко будут видны все неровности, создаваемые ультразвуковым изображением. В ультразвуковом микроскопе новой конструкции, как это показано на рис. 70, можно получать изображение рассматриваемого предмета также и с помощью линзы. И в этом случае на фоне ряби, создаваемой ультразвуком, четко вырисовывается изображение рассматриваемого предмета.


Рис. 69. Схема ультразвукового микроскопа новой конструкции

Рис. 70. Схема ультразвукового микроскопа новой конструкции с линзой

Качество оптических приборов зависит от их разрешающей способности, определяемой наименьшим расстоянием между двумя точками, которое можно различить с помощью данного прибора. Если точки находятся на расстоянии, меньшем, чем разрешающая способность прибора, они будут казаться нам слившимися в одну.

Чем короче длина волны, тем больше возможная разрешающая способность. Ультразвук с частотою в миллиард колебаний имеет длину волны, близкую к длинам волн видимого света. Однако разрешающая способность ультразвукового микроскопа в сильной степени зависит и от свойства кварцевой пластинки, создающей ультразвуковой луч. Что же касается длин волн, то полученные в настоящее время короткие ультразвуковые волны не предел, и можно надеяться достигнуть в ультразвуковом микроскопе большей разрешающей способности, чем в микроскопе оптическом. На рис. 71 изображен ультразвуковой микроскоп.


Рис. 71. Внешний вид ультразвукового микроскопа

Практическое применение ультразвукового микроскопа

Область возможных применений ультразвукового микроскопа очень широка, так как он позволяет рассматривать то, что нельзя увидеть ни простым глазом, ни в оптический микроскоп. На рис. 72 изображена полученная с помощью ультразвукового микроскопа (при десятикратном увеличении) фотография проволочки, погруженной в непрозрачную жидкость.


Рис. 72. Проволочки в непрозрачной жидкости

При рассматривании изображений в ультразвуковом микроскопе следует помнить, что светлые и темные участки их не совпадают со светлыми и темными участками изображений в оптическом микроскопе. Небольшие пустоты в твердом теле, которые мы ожидаем видеть как более светлые участки, в действительности оказываются более темными в силу отражения или поглощения ультразвука. На рис. 73 воспроизведено ультразвуковое изображение стеклянной палочки (слева) и стеклянной трубочки (справа). Стекло пропускает ультразвуковые колебания, и поэтому на изображении палочки имеются светлые участки. Через трубочку, наполненную воздухом, ультразвук не проходит, и поэтому она дает ровную тень.


Рис. 73. Изображения стеклянной палочки и трубочки, полученные при помощи ультразвукового микроскопа

Ультразвуковой микроскоп позволяет обнаружить дефекты металлических покрытий, нанесенных на кварцевую пластинку. На рис. 74 ясно видны светлые пятна, напоминающие звездочки, — это области, где серебряное покрытие неплотно пристало к пластинке и потому отслоилось. Другим способом обнаружить такие изъяны очень трудно.


Рис. 74. Области отслоения серебряного покрытия, обнаруженные ультразвуковым микроскопом

Ультразвук весьма чувствителен к изменению плотности вещества. Поэтому струйки нагретой жидкости (рис. IV, в) будут точно регистрироваться ультразвуковым микроскопом. Инженеры и ученые могут следить за тепловыми потоками, возникающими в жидкостях. Если жидкость прозрачна, пользуются оптическим методом. Для непрозрачных же веществ ультразвуковой микроскоп незаменим. Именно он дает возможность узнать, как надо конструировать различные нагреватели, какую придавать им форму, чтобы тепловые потоки жидкости возможно быстрее переносили тепло и вся жидкость нагревалась равномерно.


Рис. IV.
a — дефекты в металлическом изделии, обнаруженные ультразвуковым микроскопом, б — капельки воды в керосине, рассматриваемые в ультразвуковой микроскоп; в — тепловые потоки, наблюдаемые при помощи ультразвукового микроскопа

Прозрачность воды примерно такая же, как и прозрачность керосина, поэтому оптическими методами трудно получить изображение капелек воды в керосине. Взгляните на рис. IV, б. Ультразвуковой микроскоп обнаружил капельки воды в керосине, и каждая капелька как бы обведена четкой белой рамкой.

Особенно велико значение ультразвукового микроскопа при отыскании дефектов в металле. Даже скрытый глубоко под поверхностью металла изъян не ускользнет от его зоркого глаза. На рис. IV, а показаны ультразвуковые изображения дефектов, обнаруженных на глубине 600 и 110 миллиметров.

Если ультразвуковое изображение наблюдают на поверхности жидкости, оно оказывается выпуклым, как бы объемным. Именно так было получено изображение слова «Москва» (рис. 75), буквы которого были сделаны из тонкой проволоки.


Рис. 75. Надпись «Москва», полученная с помощью ультразвукового микроскопа

Замечательные свойства ультразвукового микроскопа, о которых мы рассказали, и в первую очередь возможность с его помощью рассматривать в увеличенном виде предметы, скрытые от человеческого взора толстым слоем непрозрачного вещества, обеспечивают широкое применение этого прибора в самых разнообразных областях науки и техники.

То, что рассказано в этой книге, не исчерпывает всех применений ультразвука. Мало рассказали мы об использовании ультразвуков в научных исследованиях. Так, например, изучая распространение ультразвука в газах, можно исследовать процессы, происходящие при соударении газовых молекул. Физики знают, что при этом молекулы переходят в особое «возбужденное» состояние. Исследовать подробности процесса, выяснить время жизни возбужденной молекулы, влияние различных добавок к газу и целый ряд других интересных вопросов позволяют ультразвуки.

Ультразвуки помогают следить за ходом химических реакций, узнавать состав различных смесей.

Изучение неслышимых звуков развивается настолько быстро, что почти каждый номер различных физических журналов приносит известия о новых достижениях в деле изучения свойств ультразвуков и их использования на помощь человеку.

Ультразвуки все шире применяются в различных областях человеческой деятельности. Уже сейчас их с успехом используют в своей работе не только физики, но и химики, биологи, инженеры, врачи…

В многочисленных лабораториях институтов ученые открывают все новые и новые способы использования ультразвуков для блага человечества.




Приложение.УСТРОЙСТВО ПРОСТЕЙШИХ УЛЬТРАЗВУКОВЫХ ГЕНЕРАТОРОВ


После выхода из печати первого издания этой небольшой книги было получено много писем, в которых читатели спрашивали, как можно устроить ультразвуковой генератор. Учитывая большой интерес к ультраакустике, автор дополнил новое издание описанием конструкции простейшего пьезоэлектрического генератора. Приводимые ниже схемы отнюдь не претендуют на техническое совершенство, что может быть оправдано их простотой и тем, что в опытных исследованиях стоимость ультраакустической энергии и, следовательно, коэффициент полезного действия генератора не играет решающей роли.

Необходимо, однако, предупредить читателей о том, что работа пьезоэлект