О неслышимых звуках — страница 6 из 25


Рис. 19. Установка гидролокатора на корабле:
1 — отсек гидроакустики; 2 — устройство, выдвигающее излучатель; 3 — излучатель: А — рабочее положение; Б — излучатель поднят

Наблюдение за отраженным сигналом с помощью осциллографа позволяет определить, на каком расстоянии от излучателя находится предмет, обнаруженный гидролокатором.

Однако когда корабль движется и расстояние между наблюдателем и обнаруженным препятствием непрерывно изменяется, по виду возникающего на экране эхо-сигнала бывает невозможно определить, что же именно является причиной его появления. Это может быть или подводная лодка, или морская скала, а в некоторых случаях и большая рыба.

Ответить на этот важный вопрос часто помогает прослушивание отраженного сигнала, превращенного в слышимый звук.

Опытный наблюдатель по звуку отраженного сигнала может сделать много ценных заключений. Так, например, он может определить, движется ли отразившее сигнал препятствие, или оно неподвижно, а если движется, то приближается или удаляется. Узнать это помогают наблюдателю изменения тона звука.

Все вы, наверное, замечали, что тон паровозного свистка кажется выше, когда паровоз приближается к нам, и ниже, когда паровоз удаляется.

Объясняется это очень просто. Предположим, что в тот момент, когда машинист включил свисток, паровоз отделяют от наблюдателя 332 метра. Как мы уже знаем, звук свистка представляет собою чередующиеся сжатия и разрежения воздуха. Именно они, попадая в ухо, и вызывают ощущение звука.

Тон звука определяется числом сжатий или разрежений воздуха за одну секунду.

Пусть свисток создает двести сжатий в секунду. Если паровоз и наблюдатель неподвижны, то сжатия следуют одно за другим через каждую двухсотую часть секунды и вызывают у человека ощущение звука определенного тона.

Если же паровоз приближается к наблюдателю, положение изменяется. Первому сжатию, чтобы дойти до наблюдателя, потребуется одна секунда, а следующему — уже меньший промежуток времени, поскольку за истекшее время паровоз приблизится к наблюдателю. Это будет справедливо и для последующих сжатий, благодаря чему за секунду к наблюдателю придет более двухсот сжатий, то есть частота колебаний увеличится и тон звука повысится.

Если паровоз будет удаляться, то второму сжатию придется пройти больший путь, чем первому, и промежуток времени, разделяющий их, увеличится. За одну секунду в ухо наблюдателя поступит меньше 200 сжатий — тон звука понизится.

Чем быстрее движется паровоз, тем заметнее изменение тона, происходящее в тот момент, когда приближающийся источник звука проходит мимо нас и начинает удаляться.

Именно такое изменение тона эхо-сигнала позволяет гидроакустику определить характер движения предмета, отразившего посланный сигнал. Следя за тем, как сначала нарастает, а потом замирает отраженный сигнал, опытный наблюдатель может составить себе представление о характере обнаруженного в море препятствия.

Дальность действия гидролокатора колеблется от нескольких сотен метров до нескольких километров, в зависимости от условий, которые существуют в воде в момент наблюдения. Основное значение при этом имеет разница температур различных слоев воды, вызывающая искривление пути звукового луча. Ультразвуковой сигнал распространяется в этих условиях не прямолинейно, а по кривой, отклоняясь в сторону более холодных слоев. Мешают также и мельчайшие воздушные пузырьки, выделяемые бесчисленными микроорганизмами, живущими в морской воде. Слои воды, насыщенные воздушными пузырьками, сильно поглощают звук, а в некоторых случаях и отражают звуковой сигнал.

Приборы, сходные с гидролокатором, могут применяться для установления подводной связи, например, между двумя погруженными подводными лодками.

С помощью ультразвука можно передавать сигналы и в воздухе. Правда, в этом случае дальность передачи сильно снижается из-за быстрого затухания ультразвука.

Было предложено использовать ультразвуковые локаторы для ориентировки при движении транспорта в тумане, однако широкого распространения эти приборы пока не получили. Ультразвуковое локирование[1] в воздухе было успешно применено в горном деле для контроля вертикальности шахтных стволов. Ультразвуковой локатор устанавливается в шахтной клети и при ее движении автоматически регистрирует профиль шахтного ствола. Средняя ошибка при контроле вертикальности ствола с помощью ультразвука составляет около 14 миллиметров.


Механический сторож

В одной из арабских сказок описывается волшебная дверь, которая открывалась только в ответ на слова: «Сезам, откройся!» С помощью ультразвука можно делать еще более удивительные вещи. Например, можно устроить так, чтобы двери гаража открывались сами собой при приближении автомобиля.

Для этого на автомобиле устанавливается ультразвуковой излучатель, посылающий при приближении к гаражу неслышимый сигнал. Этот сигнал воспринимается специальным аппаратом, который включает механизм, открывающий двери. При приближении любого другого автомобиля, не имеющего ультразвукового сигнализатора, двери останутся закрытыми.

Ультразвуковой аппарат, если потребуется, может зорко охранять помещение и в этом отношении имеет определенные преимущества по сравнению со всеми другими аппаратами, предназначенными для той же цели. В охраняемом с помощью ультразвука помещении можно обнаружить любое возникшее в нем движение. Для этого помещение наполняется ультразвуковыми волнами, распространяющимися во всех направлениях и многократно отражающимися от различных предметов, находящихся в помещении. Если в помещении отсутствует движение, то все возникающие эхо-сигналы имеют одну и ту же частоту колебаний. Не то будет, если в комнате появится движущийся предмет. Эхо, возникшее при отражении от движущегося предмета, будет по частоте отличаться от остальных эхо-сигналов. Специальный высокочувствительный приемник эхо-сигналов, установленный в той же комнате, сейчас же реагирует на возникновение колебаний иной частоты включением сигнализации, оповещающей о наличии в комнате движения. Один из американских журналов поместил следующее сообщение. Большой ювелирный магазин был ограблен, несмотря на наличие обычной электросигнализации. Грабители проникли в магазин не через окна или двери, где были установлены сигнальные аппараты, а разобрав кирпичную стену магазина. После этого владелец магазина установил ультразвуковую сигнализацию, и спустя несколько месяцев ультразвук помог задержать грабителей, опять проникших в магазин, теперь уже через потолок. Преступники возражали против задержания, утверждая, что оно сделано «не честно», так как они приняли все меры против обычной сигнализации, которая и бездействовала, а об ультразвуках они, мол, ничего не слыхали.

В настоящее время ультразвуковая сигнализация позволяет охранять большие помещения, объемом больше тысячи кубических метров. Ультразвуковой сигнализацией можно воспользоваться на некоторых заводах, чтобы избежать попадания людей в зону, почему-либо опасную для жизни, или такую, где находиться запрещено.

Описанные ультразвуковые сигнализаторы автоматически оповещают о возникновении пожара. Восходящий от пламени подвижный столб теплого воздуха прекрасно отражает ультразвуковые волны, создавая эхо-сигналы с частотой, отличной от частоты основных сигналов. В Америке на предприятиях, где была установлена ультразвуковая сигнализация, уже зарегистрировано несколько случаев предупреждения пожаров.

Однако тем, что мы рассказали, далеко не исчерпываются возможности, открывшиеся перед человеком после того, как он узнал свойства ультразвуков. В результате использования особенностей неслышимых звуков становятся реальностью самые смелые мечты.


Ультразвуковой эхолот

Читатель, наверное, помнит, сколько хлопот доставила героям известной сказки «Конек-Горбунок» необходимость извлечь со дна моря сундучок с перстнем царь-девицы. Самое трудное было найти его. Если бы не ерш, так бы и оставаться сундучку на дне морском.

В наше время легко можно было бы отыскать пропажу с помощью ультразвука.

Автоматический прибор, называемый ультразвуковым эхолотом, позволяет не только измерить глубину океана и исследовать рельеф морского дна, но и обнаружить там какой-либо предмет.

Эхолот очень похож на гидролокатор.


Рис. 20. Схема работы эхолота

Ультразвуковой магнитострикционный вибратор 4 (рис. 20), укрепленный в корпусе корабля, через определенные промежутки времени, обычно один раз в секунду, посылает короткий сигнал, который автоматически регистрируется на специальной ленте. В эхолоте все операции автоматизированы. Когда ультразвук, достигнув морского дна и отразившись, приходит обратно, эхо-сигнал принимается магнитострикционным приемником 3, проходит через усилитель 2 и регистрируется на ленте. Таким образом, на движущейся ленте возникают две линии: одна — О — соответствует излучениям сигналов, то есть дну корабля, вторая — Д — приходу эхо-сигнала, то есть дну моря. Чем больше расстояние между этими линиями, тем больше глубина моря в той точке, в которой производилось измерение. Нанеся на ленту специальный масштаб, можно отсчитывать глубину моря в метрах. Такая запись глубин называется батиграммой.

Современные эхолоты устроены так, что на специальной шкале в той ее точке, которая соответствует глубине моря под кораблем, зажигается неоновая лампочка. Взглянув на эту шкалу, штурман всегда может узнать, какова глубина моря в том месте, где находится корабль. Эхолот не только предупреждает о наличии скал и мелей, но и позволяет определить местонахождение корабля. В настоящее время составлены очень подробные карты морских глубин. Пользуясь подобной картой и батиграммой, можно определить положение корабля даже тогда, когда сделать это другим способом почему-либо невозможно.