О неслышимых звуках — страница 7 из 25

С помощью эхолота было найдено одно из самых глубоких мест в море — морская пучина в Тихом океане глубиной 10 860 метров.

Преимуществом ультразвуковых эхолотов является то, что ими можно производить измерения почти при любой погоде, не уменьшая скорости корабля, и измерять как очень большие, так и совсем малые глубины.

Точность, с какою эхолот определяет рельеф морского дна, настолько велика, что с его помощью можно отыскивать затонувшие корабли. На рис. 21 изображен записанный с помощью эхолота контур затонувшего на глубине 100 метров корабля «Лузитания».


Рис. 21. Силуэт «Лузитании»

Большое хозяйственное значение имеет применение эхолотов в рыбном промысле.

Наполненные воздухом плавательные пузыри рыб хорошо отражают ультразвуковые сигналы, а это дает возможность, пользуясь эхолотом, обнаруживать косяки рыб. На рис. 22 изображена лента эхолота, на которой записан обнаруженный косяк сельди. Верхняя граница 1 соответствует поверхности моря. Нижняя зигзагообразная линия 2 соответствует морскому дну. Записанная эхолотом линия 3, расположенная между дном и поверхностью моря, возникла в результате отражения ультразвука от косяка сельди. Подобная запись позволяет сделать заключение не только о расположении косяка, но и о его размерах.


Рис. 22. Запись эхолотом косяка сельди

Используя ультразвук для отыскания рыбных косяков, удается значительно увеличить улов, одновременно сократив продолжительность рыболовной экспедиции.

Несомненно, что в ближайшем будущем эхолот будет еще шире применяться в рыбном промысле.

В гидролокаторах и эхолотах ультразвук обнаруживается по тому действию, которое он оказывает на специальный приемник.

В настоящее время разработано несколько способов, с помощью которых можно сделать ультразвуковые волны еще и видимыми, что дает возможность следить за ходом ультразвукового луча.


Ультразвуковые волны делаются видимыми

В жаркий летний день можно наблюдать поднимающиеся над шоссейной дорогой струйки воздуха, нагревшегося от поверхности земли. Струйки сделались видимыми благодаря расширению воздуха при нагревании, которое привело к уменьшению его плотности, а последнее — к изменению оптических свойств, к уменьшению коэффициента преломления. По той же причине были бы видимы струйки сжатого воздуха, плотность которого больше, чем плотность окружающего воздуха.

Такие же явления наблюдаются и в жидкостях. Налейте в стакан теплой воды и, расположив позади стакана книгу, добавьте осторожно холодной и, следовательно, более плотной воды. Сейчас же возникнут струйки с иными оптическими свойствами. Наличие этих струек приведет к тому, что буквы на странице, рассматриваемой через стакан с водой, покажутся нам колеблющимися, расплывающимися.

Если осветить стакан свечой, то на теневом изображении эти струйки будут ясно различимы.

При распространении звуковой волны происходят, как мы знаем, попеременные сжатия и разряжения воздуха, то есть изменения, аналогичные тем, о которых мы говорили в предыдущем опыте. Следовательно, теневое изображение звуковой волны можно получить так же, как изображение водяных струй, температура которых различна. При этом надо только помнить, что в проходящей звуковой волне сжатия и разрежения чередуются чрезвычайно быстро. Если мы хотим получить изображение волны, то должны осветить ее в течение очень короткого промежутка времени, пока распределение давления не успело значительно измениться. Практически для получения изображения звуковых волн пользуются прерывистым светом, который вспыхивает с той же частотой, с какой колеблется кварцевая пластинка. Вспышки света совпадают при этом с одним и тем же положением колеблющейся пластинки, так что изображение звуковой волны на экране как бы «застывает» и получается четким.

Заменив экран фотографической пластинкой, звуковую волну можно сфотографировать.

Эти особенности волн позволили советским ученым С. Н. Ржевкину и С. И. Кречмеру применить ультразвуки для изучения на моделях акустических свойств различных построек: концертных залов, аудиторий и т. п.

На рис. 23 изображено распространение волны, на пути которой расположена колонна. Хорошо видна «акустическая тень»— темное место за колонной. В зоне акустической тени звук будет ослаблен. Таким методом можно решать самые различные задачи архитектурной акустики.

Изучая на небольшой модели акустические свойства проектируемого концертного зала или театра, нельзя пользоваться обычными звуковыми волнами. Поведение волны, проходящей через отверстие в преграде или встречающей на своем пути препятствие, как мы уже знаем, определяется соотношением между длиною волны и размерами отверстия или препятствия. Поэтому при моделировании необходимо уменьшить длину волны звука пропорционально уменьшению размеров сооружения. Применяя ультразвуковые волны, длина которых очень мала, можно делать и модели небольших размеров.

Но как же получить прерывистое освещение такой большой частоты, которая соответствовала бы частоте ультразвуковых волн?


Рис. 23. Акустическая тень от колонны

Если изменение яркости света должно происходить не слишком быстро, то можно воспользоваться обычной электрической лампочкой, изменяя напряжение питающего тока. Там же, где яркость света должна меняться очень быстро, способ этот непригоден, так как за короткий промежуток времени раскаленная нить лампочки не будет успевать охлаждаться и яркость света будет оставаться практически постоянной.

Для электрического освещения обычно пользуются переменным током, напряжение которого 100 раз в секунду уменьшается до нуля, и все же никаких изменений в яркости света при этом не наблюдается. Даже за этот большой по сравнению с продолжительностью ультразвуковых колебаний промежуток времени нить не успевает охладиться.

Необходимость быстро изменять, или, как говорят, модулировать, силу света часто возникает в технике: при записи звука, в телевидении, при изучении работы быстродвижущихся частей машин и т. д.

Решить эту важную задачу можно опять-таки с помощью ультразвука.


Рис. 24. Схема ультразвукового модулирования света

Для быстрых изменений яркости света можно воспользоваться изменением оптических свойств вещества при распространении ультразвука. На рис. 24 изображена одна из возможных схем ультразвукового модулирования света. Световые лучи, расходящиеся от источника света Л, линзой О1 превращаются в параллельный пучок лучей, который, пройдя через стеклянную ванночку K, собирается линзой О2 в фокусе Ф. Экран Э преграждает лучам дальнейший путь. Ванночка K наполнена прозрачной жидкостью, в которой находится пьезоэлектрическая пластинка. Если заставить пластинку совершать колебания и создать в жидкости ультразвуковую волну, то жидкость сделается оптически неоднородной. Оптическая неоднородность жидкости заставит световые лучи изменить свой путь. Некоторая часть лучей уже не соберется в фокусе Ф и не будет поэтому задержана экраном. Чем больше будет интенсивность ультразвука, тем больше лучей минует экран. Интенсивность ультразвука в свою очередь зависит от электрического напряжения, которое подводится к пьезоэлектрическому излучателю. Изменяя электрическое напряжение, можно менять интенсивность ультразвуковых колебаний и, следовательно, модулировать яркость освещения за экраном.

Недавно модулирование света с помощью ультразвука использовали в сигнализаторе для передачи секретных донесений. Изменения силы света, вызываемые ультразвуковыми колебаниями, посылались наблюдателю, вооруженному телескопом. В телескопе световые лучи падали на фотоэлемент, превращавший их в электрический ток. Чем больше была сила света, тем сильнее был ток. Изменения в силе тока позволяли расшифровать принятый сигнал. Днем сигналы можно было передавать километра на три, а ночью — почти на пять.

С помощью ультразвука можно получить очень мощный луч света переменной силы, изменяющийся почти с любой частотой.

Заставив такой луч бежать по экрану, прочерчивая строку за строкой, можно получить телевизионное изображение.

Видимые изображения отраженных от препятствия и прошедших через него ультразвуковых волн позволяют по их интенсивности сделать заключение о поглощении звука разными материалами.

Как показал опыт, изучение различных волновых процессов на моделях позволяет детально разобраться в происходящих при этом явлениях.

Фотографируя наблюдаемую картину и рассматривая полученные фотографии, мы ясно различаем идущую от источника волну, ее встречу с препятствием, возникновение отраженной волны, взаимодействие последней с падающей волной и т. д. Эти особенности ультразвука имеют большое значение для преподавания физики в школе. Таким способом можно показать учащимся законы распространения звуковых и ультразвуковых волн, сделать преподавание более наглядным и убедительным. Добиться этого, не прибегая к неслышимым звукам, трудно, а иногда и вообще невозможно.

Глава 3.УЛЬТРАЗВУК И ЖИВЫЕ СУЩЕСТВА


Загадка летучих мышей

Сами того не подозревая, мы в повседневной жизни постоянно сталкиваемся с неслышимыми звуками.

Сконструировав чувствительные приемники ультразвука, ученые обнаружили, что даже привычные для нас звуки, как, например, телефонный звонок, тикание часов, шум самолета, содержат наряду с обычными слышимыми звуками также и неслышимые ультразвуки.

Расположив в лесу специальные приборы, исследователи обнаружили, что погруженный в ночную тишину как бы уснувший лес в действительности наполнен не воспринимаемыми человеческим ухом писком и криками его многочисленных обитателей.

Хорошо воспринимают, «слышат» ультразвуки некоторые домашние животные.