Итак, Стивен, вечно оптимистичный и безудержный в амбициях, не желал оставаться заложником своей собственной теоремы о сингулярности. Существование исходной сингулярности, рассуждал он, как и многие другие, на самом деле говорит нам не о том, что причине Большого взрыва суждено остаться непознаваемой, но о том, что эйнштейновское описание гравитации в терминах деформируемого пространства-времени перестает работать в экстремальных условиях рождения Вселенной. Когда мы погружаемся в детали Большого взрыва, на первый план выходят мелкомасштабные квантовомеханические случайности. Можно было бы сказать, что пространство и время отчаянно стремятся выломаться из жестких рамок детерминистской теории Эйнштейна. В конечном счете, несмотря на все его изгибы и деформации, пространство-время в общей теории относительности – крайне жестко ограниченная структура, состоящая из определенной последовательности форм пространства, скрупулезно пригнанных и вставленных друг в друга наподобие «матрешек», в результате чего и образуется четырехмерное пространство-время. Хокинговская теорема о сингулярности Большого взрыва больше, чем что-либо иное, продемонстрировала крайнюю серьезность конфликта между относительностью и квантовой теорией. Она снова подтвердила интуитивную догадку Леметра о том, что космогенез есть сугубо квантовое явление и что если мы хотим разгадать загадку творения на основе научного подхода, мы должны каким-то образом найти путь к объединению этих двух с виду противоречащих друг другу глубинных принципов Природы. Ключевой мотив интуиции Стивена заключался в том, что такое объединение будет чем-то значительно большим, чем простым уточнением существующих рамок предсказательного аппарата физики, что оно потребует от нас переосмысления самих этих рамок, вывода физики за пределы устаревшего дуализма законов и граничных условий, эволюции и творения.
Упоминание квантовой механики, второго краеугольного камня современной физики, уже не впервые встречается на этих страницах. Она возникла из неожиданных результатов экспериментов с атомами и светом в самом начале XX века. Эти результаты нельзя было объяснить никаким расширением классической механики Ньютона. Создание теории квантов в бурные годы начала XX века остается одним из лучших примеров международного сотрудничества в человеческой истории. С тех времен на протяжении всего столетия квантовая механика шла от одного триумфа к другому, сделавшись самой мощной и с наибольшей точностью протестированной научной теорией всех времен. Она применима ко всем известным видам частиц. Идет ли речь о мелких деталях взаимодействия элементарных частиц или о механизме синтеза атомов в недрах далеких звезд – предсказания квантовой механики всегда идеально соответствуют экспериментальным данным. И как созданная Максвеллом классическая теория электромагнетизма заложила основы второй промышленной революции, так и принципы квантовой теории стали фундаментом сегодняшних технологий. А ведь мы, возможно, видим сейчас только верхушку айсберга – квантовые технологии обещают дать гораздо больше. В недалеком будущем физики и инженеры надеются использовать внутреннюю неопределенность микромира для хранения и обработки информации совершенно новыми способами: манипулируя индивидуальными квантовыми битами, или кубитами, и прокладывая тем самым путь к эпохе квантовых компьютеров.
Квантовая революция началась в 1900 году, когда немецкий физик Макс Планк предположил, что любые виды нагретых тел излучают энергию в виде малых дискретных порций, названных им квантами. Планк пытался объяснить, какое количество света каждого цвета излучает горячее тело. Из классической теории Максвелла он знал, что свет состоит из электромагнитных волн с различными частотами колебаний, соответствующими разным цветам. Трудность была в том, что классическая физика предсказывала: энергия, излучаемая нагретым телом, должна быть равномерно распределена между волнами всех частот. Так как в теории Максвелла рассматривались электромагнитные волны неограниченно высоких частот, получалось, что общая излученная энергия, просуммированная по всем частотам, должна быть бесконечной – результат очевидно невозможный. Это и было второй «тучкой» из двух замеченных лордом Кельвином на безоблачном горизонте классической физики. Сложившаяся ситуация получила название «ультрафиолетовой катастрофы» – так как самые высокие частоты видимого света соответствуют фиолетовому цвету, термин «ультрафиолет» относится к еще более высоким частотам.
Тогда Планк совершил то, что он впоследствии описал как «акт отчаяния». Он выдвинул предположение невероятной смелости и новизны: что свет, как и все другие электромагнитные волны, может излучаться только в виде дискретных квантов и что энергия каждого кванта тем выше, чем больше частота этих волн. Квантовая гипотеза Планка резко уменьшила излучение высокочастотных волн, тем самым устранив ультрафиолетовую катастрофу. В 1905 году Эйнштейн пошел еще дальше: он показал, что электроны, движущиеся в металлах, тоже поглощают свет только в виде дискретных квантов, которые он описал как крохотные частицы – фотоны. Так что получалась любопытная ситуация: в первых же идеях квантовой физики свет представал как нечто, имеющее свойства не только волн, но и частиц. Это вносило некоторую неразбериху.
Смятение еще усилилось, когда подобно тому, что Планк сделал в отношении света, датский физик Нильс Бор использовал идею квантов для объяснения существования устойчивых атомов – еще одного очевидного свойства физического мира. Бор, в честь которого даже назван химический элемент борий[93], учился в Манчестере у британского физика Эрнеста Резерфорда, который экспериментально установил, что внутренняя структура атома представляет собой в основном пустоту с крохотным ядром посредине. Резерфорд представлял себе атомы в виде миниатюрных планетных систем, в которых отрицательно заряженные электроны обращаются по орбитам вокруг плотного центрального ядра, несущего положительный заряд. Так как противоположные заряды притягиваются, электроны удерживаются на орбитах вокруг ядра. Но незадача была в том, что, согласно максвелловской классической теории электромагнетизма, движущийся по орбите электрон излучает энергию, что должно заставить его двигаться по спирали к ядру и в конце концов столкнуться с ним. Значит, все атомы во Вселенной должны были очень быстро коллапсировать, и нас бы не существовало. Чтобы разрешить это очевидное несоответствие реальности, Бор предположил, что электроны не могут обращаться вокруг ядра по орбитам любого радиуса, а только на определенных расстояниях. Другими словами, Бор квантовал возможные электронные орбиты. Теперь электроны уже не должны были падать на ядра по спирали, атомы были спасены от быстрого – теоретического – коллапса, a Бор в 1922 году получил за свое открытие Нобелевскую премию.
В 1911 году по приглашению бельгийского промышленника Эрнеста Сольвея пионеры квантовой теории собрались в Брюсселе на одну из самых первых международных физических конференций. Это было время, когда международное сотрудничество культивировалось в Бельгии на уровне государственной политики. Сольвей был свободомыслящим мечтателем, который, впрочем, сколотил состояние на том, что изобрел новый процесс синтеза кальцинированной соды и создал разветвленную сеть ее производства и доставки. Потом он отошел от дел и стал заядлым альпинистом – несколько раз совершал восхождения на Маттерхорн и даже сумел увлечь альпинизмом бельгийского короля Альберта I, что в конечном счете привело к непредвиденным и катастрофическим последствиям[94].
Первый Сольвеевский конгресс, проходивший в шикарном отеле «Метрополь» в центре Брюсселя, быстро приобрел поистине легендарный статус: именно на нем ученые наконец осознали грандиозное революционное значение ранних квантовых идей. Он обозначил водораздел между классической физикой XIX века и физикой квантов, которой суждено было царить в веке XX. Председательствовал на конгрессе знаменитый голландский физик Хендрик Лоренц; в его вступительной речи ясно слышались растерянность и ошеломление, которые этот мэтр классической физики чувствовал при первом столкновении с квантовым миром. «Современные исследователи сталкиваются со все более и более серьезными трудностями, когда пытаются описать движение малых частиц вещества… В настоящее время мы еще далеки от полностью удовлетворительных результатов… Напротив, мы сейчас видим, что оказались в тупике: старые теории оказались не в состоянии проникнуть сквозь тьму, обступившую нас со всех сторон»[95]. Однако на этой конференции, обсудив все, не договорились ни о чем. По-прежнему не было согласия по вопросу о том, можно ли каким-то образом подлатать классическую физику, чтобы она могла приспособиться к существованию квантов. Общее настроение хорошо выразил Эйнштейн: «Квантовая болезнь выглядит все более безнадежной. Никто ничего, в сущности, не знает. Вся эта история доставила бы наслаждение отцам-иезуитам. Общее впечатление от конференции – плач на развалинах Иерусалима».
Все изменилось в середине 1920-х, когда новое поколение квантовых физиков разработало для описания взаимодействия атомов и субатомных частиц фундаментально новый аппарат: квантовую механику.
Центральным положением новой механики стал знаменитый принцип неопределенности, сформулированный молодым немецким гением Вернером Гейзенбергом: невозможно одновременно знать и точное положение частицы, и ее скорость. Сам Гейзенберг выразил это так: «Чем более точно определено положение [частицы], тем с меньшей точностью в этот момент времени известно ее количество движения [или скорость], и наоборот»[96]. Максимум, на что можно надеяться в квантовой механике, – это «размытая картинка», в которой положения и скорости частиц известны приближенно.