Таким образом, если приложить картину, которую рисует Стандартная модель физики частиц, к «плавильному тиглю» горячего Большого взрыва, получается, что Вселенная не родилась с теми значениями масс частиц и сил, которые мы наблюдаем сейчас. Это свойства состояния с нарушенной симметрией, которое оформилось и «застыло», только когда расширилась и остыла Вселенная. И это глубокое прозрение. Оно говорит нам, что на самых ранних стадиях космического расширения некоторые основные структурные физические законы эволюционировали совместно со Вселенной, которой они управляли. Физики говорят, что известные нам законы физики частиц есть действующие законы – правила, которые соблюдаются только в мире относительно низких энергий и температур, возникшем через некоторое время после начала расширения Вселенной.
Замечательно в этих действующих законах физики частиц то, что мы можем открывать и использовать их, не заботясь или даже вообще ничего не зная о том, что происходит на более коротких расстояниях либо при более высоких энергиях, – до такой степени безукоризненно устроена иерархическая, вложенная структура Природы. Вы можете, например, описать макроскопическое поведение воды гидродинамическим уравнением, которое моделирует ее в виде однородного потока, не принимая при этом во внимание сложную динамику молекул H2O. Или описать поведение пучка протонов и нейтронов при энергиях ниже гигаэлектронвольта в рамках упрощенной теории частиц, игнорирующей тот факт, что каждая из этих частиц состоит из трех кварков. Большая часть успеха физики прошлого основана на этом ясном разделении масштабов. И это служит нам настоящим сигналом предупреждения о степени затруднений, которые возникают, когда мы пытаемся включить в унифицированные рамки гравитацию и сталкиваемся с ограничениями, обусловленными этой вложенной структурой.
НА САМЫХ РАННИХ СТАДИЯХ КОСМИЧЕСКОГО РАСШИРЕНИЯ НЕКОТОРЫЕ ОСНОВНЫЕ СТРУКТУРНЫЕ ФИЗИЧЕСКИЕ ЗАКОНЫ ЭВОЛЮЦИОНИРОВАЛИ СОВМЕСТНО СО ВСЕЛЕННОЙ, КОТОРОЙ ОНИ УПРАВЛЯЛИ.
Очевидно, что точная форма действующих законов, возникших на самом древнем уровне эволюции, глубоко скрытом в недрах горячего Большого взрыва, имеет самое фундаментальное значение. Представьте, что сгущающееся поле Хиггса приобрело бы немного другое значение напряженности. Тогда и массы частиц были бы другими. Но даже умеренные изменения их значений привели бы к далеко идущим последствиям – например, к невозможности существования устойчивых атомов. Тогда во Вселенной не было бы никакой химии – а значит, опять-таки, не было бы и жизни.
В границах Стандартной модели мы можем быть спокойны: чистый итог нарушающего симметрию преобразования хиггсовского поля универсален. Да, поле может соскользнуть по своей кривой распределения энергии разными способами, как карандаш на рис. 34 может упасть в любую сторону. Однако его общая напряженность, а следовательно и результирующие массы частиц, всегда придут к одним и тем же значениям. Но Стандартная модель – только часть физики частиц. Начнем с того, что она объединяет сильное и электрослабое взаимодействия лишь условно. Далее Стандартная модель не учитывает существования темной материи, составляющей 25 % общей массы и энергии сегодняшней Вселенной. А темная материя вполне может включать гораздо большее число видов частиц и сил. Наконец, Стандартная модель оставляет за бортом темную энергию и гравитацию – деформацию пространства-времени.
Все это означает, что, когда мы прослеживаем историю Вселенной до еще более ранних времен, остается простор для еще более унифицирующих видов простоты и симметрии. И хотя мы здесь оказываемся на более умозрительной территории, вполне вероятно, что механизм нарушения симметрии, вызывавший расщепление электрослабой силы в Стандартной модели, здесь действует в более общем виде. А значит, когда мы движемся в сторону более высоких температур и более ранних времен, знакомые нам действующие физические законы присутствуют все в меньшей и меньшей степени.
Возьмем сам факт существования материальных частиц. В наблюдаемой Вселенной содержится около 1050 тонн вещества, но почти отсутствует антивещество. Это еще одна благоприятная для жизни особенность – ведь если бы в расширяющейся Вселенной было одинаковое количество вещества и антивещества, все частицы очень быстро должны были бы аннигилировать с античастицами. Произошла бы невероятной силы вспышка высокоэнергетического гамма-излучения, а вещество бы исчезло. Но ведь когда в Большом коллайдере происходят высокоэнергетические столкновения с образованием вещества, образуется такое же количество антивещества. Как же вышло, что при огненном рождении Вселенной образовался избыток вещества в 1050 тонн? Что-то в условиях сверхгорячего Большого взрыва должно было нарушить симметрию между веществом и антивеществом – и это «что-то» чуть больше благоприятствовало созданию частиц, а не античастиц.
Такие гипотетические механизмы нарушения симметрии и ассоциированные с ними поля, напоминающие поле Хиггса, составляют группу расширений Стандартной модели, известных под именем Теорий великого объединения (ТВО), потому что они связывают электрослабые силы с сильным ядерным взаимодействием в рамках фундаментальной объединяющей схемы. По сути, ТВО определяются в основном своими видами симметрий. Эта стратегия восходит к Эйнштейну, который в 1905 году положил в основание своей частной теории относительности пространства-времени принцип симметрии, связывающей пространство и время. Лоренц ворчал, что Эйнштейн попросту принял как предположение то, что он сам и другие пытались вывести логически. Но история оказалась на стороне Эйнштейна. С эйнштейновских времен абстрактные математические симметрии стали повсеместно приниматься в качестве законного основания физических теорий.
В космологической перспективе ТВО предсказывают, что, если мы вернемся к исключительно высоким температурам, во много миллиардов раз превышающим температуру в ядре Солнца, то окажется, что электрослабое и сильное ядерные взаимодействия будут в сущности одной и той же силой и что вещество и антивещество будут идеально симметричны друг другу. Однако типичные ТВО допускают, что в пределах этой унификации возможна малая степень смешения между составляющими силами. Одним из следствий этого смешения было бы то, что позитрон, античастица электрона, мог превращаться в протон – обычную частицу, не «анти». Несмотря на то что такие превращения случались исключительно редко, в результате мог бы образоваться небольшой избыток вещества над антивеществом, что при одном из переходов в ходе остывания Вселенной нарушило бы первичную симметрию ТВО. В рамках этого сценария в плотном первичном газе после этого все антивещество проаннигилировало бы с веществом, затопив Вселенную высокоэнергетическими фотонами. Но малая часть исходного вещества – не более одной части на миллиард – все же сохранилась бы. Вот этот почти случайный довесок и был теми 1050 тоннами вещества, из которых сделан весь нынешний мир, включая нас с вами. А фотоны, превратившись в холодный и слабый остаток величайшего события аннигиляции в истории Вселенной, сегодня составляют микроволновое космическое фоновое излучение.
Очевидно, что Теории великого объединения проработаны далеко не так хорошо, как Стандартная модель. Ошеломляющие масштабы энергий, при которых проявляются основные симметрии, оставляют далеко позади даже огромные энергии, достигаемые на БАК. И наши весьма ограниченные космологические наблюдения свидетельств той далекой эры не позволяют определить, которая из многих возможных ТВО действительно описывает сверхгорячий Большой взрыв. Но если широко понимаемые принципы симметрии, на которых основаны эти теории, окажутся верны, то мы можем рассчитывать, что некоторые наиболее фундаментальные свойства физического мира, такие как существование массы и вещества, являются не первичными математическими истинами, но результатом ряда нарушающих симметрию переходов, постепенно трансформировавших первичную симметрию в основание будущей сложности мира.
Можно зайти и еще дальше. В 1974 году физики Юлиус Весс и Бруно Зумино предположили, что может существовать еще более общая симметрия, которая связывает друг с другом не только различные силовые поля, но и силовые поля с полями вещества. Они назвали ее суперсимметрией. Если идея суперсимметрии получит подтверждение, то может оказаться, что даже само различие между силовыми частицами и частицами вещества тоже зародилось в серии переходов, подобных тем, что происходили в поле Хиггса. Эти переходы, возможно, нарушали исходную суперсимметрию, попутно генерируя частицы темной материи, подчиняющиеся дополнительным силам, которые лежали за гранью знакомой нам четверки.
Общая тенденция здесь ясна: наши лучшие объединяющие квантовые теории в физике частиц говорят, что, когда Вселенная остывала после сверхгорячего Большого взрыва, в течение первой микроскопической доли секунды, различные математические симметрии должны были нарушаться. Это вызывало ряд переходов, которые постепенно приводили к появлению структурированной системы действующих при низкой температуре законов. Таким образом, нам открывается поразительный и глубокий уровень эволюции – метаэволюция, в ходе которой изменяются и мутируют физические законы самой эволюции. Схематически этот каскад переходов изображен на рис. 35. Эти переходы – некоторые из них подтверждены, многие другие остаются чисто гипотетическими – должны были трансформировать первичную однородную и симметричную Вселенную в сложную и разнообразную физическую среду, которая в конце концов развилась до уровня, пригодного для возникновения жизни.
Эти замечательные прозрения заставляют вспомнить старую идею Поля Дирака – еще в 1930-х он говорил, что нельзя считать физические законы жесткими и неизменными истинами, «впечатанными» в ткань Вселенной при ее рождении, как водяные знаки. «В связи с появлением новой космологии стоит отметить еще один момент, – писал Дирак. – В начале времен законы Природы, вероятно, очень отличались от тех, каковы они сейчас. Таким образом, мы должны рассматривать законы Природы как постоянно изменяющиеся от одной эпохи к другой»