О происхождении времени. Последняя теория Стивена Хокинга — страница 47 из 69

Возьмем, к примеру, кота из знаменитого парадокса, придуманного Шрёдингером: кот помещен в запечатанный ящик, в котором находится мина, приводимая в действие распадом радиоактивного ядра (см. рис. 41). Вероятность распада за определенное время составляет 50 %. В копенгагенской лабораторной схеме ящик рассматривается с внешней точки зрения: схема предсказывает, что кот будет находиться в суперпозиции мертвого и живого одновременно до тех пор, пока ящик не откроют и наблюдатель в него не заглянет. Это не имеет смысла – кот не может быть наполовину живым, как женщина не может быть наполовину беременной. В принятой Эвереттом перспективе, в которой вселенная видится изнутри ящика, вся эта история выглядит совершенно по-другому: в эксперименте, который запутывает судьбу кота с судьбой радиоактивного ядра, история вселенной разветвляется. В одном из ее продолжений ядро распадается, мина взрывается, и коту приходит конец. В другой ветви истории коту повезло – ядро не распадается, и он остается жить. Процесс разветвления происходит гладко и непрерывно: ни одна из копий кота не испытывает необычной суперпозиции, хотя, конечно, исход эксперимента для них разный.

Таким образом, в практическом смысле индивидуальные фрагменты эвереттовской волновой функции ведут себя как отдельные ветви реальности. Каждый из этих фрагментов описывает конкретную историческую траекторию, в которой фигурирует измерительное устройство, регистрирующее конкретный результат, ментальное впечатление, которое наблюдатель получает от исхода опыта, и все остальное, что существует вокруг, – лаборатория, планета Земля, Солнечная система и вся Вселенная. Для наблюдателей, находящихся в своих ветвях, весь процесс раздвоения происходит органично и естественно – как река, разделяющаяся на два рукава. Никто из наблюдателей не подозревает о своем двойнике – они проживают остаток жизни в разных историях, скользя по различным гребням универсальной квантовой волны. «Только вся совокупность состояний этих наблюдателей, с их взаимоисключающим знанием, содержит полную информацию», – заявлял Эверетт[164].

По словам самого Эверетта, он надеялся каким-то образом перебросить мостик между позициями Эйнштейна и Бора, объявив, что различия между ними всего лишь вопрос угла зрения. Свою схему он описывал как «объективно детерминистскую, с вероятностью, появляющейся на субъективном уровне». Это интересный момент. В ранней копенгагенской формулировке квантовой механики вероятности вводились аксиоматически и занимали фундаментальное положение. Откройте любой учебник квантовой механики 1930-х, и на первых же страницах вы увидите, что вероятности определяются как квадраты амплитуд волновых функций. В рамках подхода Эверетта это совсем не так – здесь вероятности проскальзывают в квантовую теорию гораздо более тонким, «субъективным» образом, очень схожим с тем, которым вероятность входит в наше мышление в повседневной жизни. Раздумываем ли мы о погоде, о результатах лотереи или о форме следующей гравитационной волны, которая пройдет через планету Земля, мы все постоянно пользуемся субъективными вероятностями, чтобы дать количественную оценку неопределенности в ситуациях, в которых наши знания неполны. Это понятие вероятности было формализовано итальянским математиком Бруно де Финетти, который в 1974 году написал в своем трактате: «Мой тезис, парадоксальный и немного провокативный, попросту таков: [аксиоматической] вероятности вовсе не существует <…> а существуют только вероятности субъективные, степень веры в осуществимость события, приписываемая данным лицом в данное мгновение и с данным объемом информации»[165]. Это происходит и в реальной повседневной жизни. На протяжении всей нашей жизни большинство из нас доверяет нашим субъективным вероятностным оценкам: ведь то, что мы считаем вероятным, случается с нами часто, а то, что считаем маловероятным, происходит редко.

Расходясь с учебниками, Эверетт отстаивал идею, что вероятности в квантовой теории субъективны точно так же, как и все остальные используемые нами вероятности. В его схеме они возникают потому, что неведение экспериментаторов о конкретном исходе эксперимента, свидетелями которого они станут, является источником неполной информации. Вероятности дают количественное выражение этой неопределенности и тем самым служат для экспериментаторов руководством для определения шансов того или иного исхода – так же, как мы пользуемся прогнозом погоды, когда решаем, брать ли с собой зонтик. Красота и полезность квантовой теории в том, что уравнение Шрёдингера можно использовать для предсказания относительных высот (амплитуд) волновых фрагментов, соответствующих всем возможным исходам измерения, и что квадраты этих волновых амплитуд дают оптимальную стратегию выбора ставок на различные исходы.

Получается, что на уровне повседневного опыта каждый акт наблюдения соответствует как бы процедуре обрубания ответвлений возможного будущего. Ситуация измерения в квантовой теории напоминает дорожную развилку: в этой точке история разделяется на два или более ответвлений. Опыт любого наблюдателя, оказавшегося в такой точке ветвления, говорит о том, что реализуется лишь одна из ветвей. Ветви, которые не соответствуют исходу измерений наблюдателя, развиваются независимо и интереса больше не представляют, так же как и все части дерева, вырастающие из них. В каком-то смысле они уплывают в неизмеримый океан возможностей. Физики говорят, что такие непересекающиеся друг с другом ветви истории расщепляются (decouple), или декогерируют.

Однако декогерируют не все истории. Знаменитый пример – интерферирующие траектории в эксперименте с двумя щелями, о котором я рассказывал в главе 3. В этой схеме пути электрона, проходящего через одну щель, не отделяются от путей, проходящих через вторую щель, а переплетаются, образуя на экране интерференционную картину (см. рис. 20). Переплетение путей означает, что, наблюдая точки прихода на экране, мы не можем сказать, через какую из щелей прошел электрон. Дело выглядит так, как будто каждый индивидуальный путь не обладает полной идентичностью. Только общая сумма всех интерферирующих путей, заканчивающихся в данной точке экрана, составляет независимую ветвь реальности, обладающую значимой вероятностью. Именно поэтому наблюдаемая интерференционная картина объясняется фейнмановской схемой суммирования по историям.

Давайте, однако, представим себе видоизменение этого эксперимента: теперь у каждой щели имеется газовое облако (см. рис. 42). При этом, когда электрон проносится сквозь преграду, фрагменты волны, исходящие из каждой щели, будут взаимодействовать с газом и быстро сделаются несовместимыми: на пути к экрану им будет практически невозможно проинтерферировать.

Неудивительно поэтому, что теперь интерференционная картина на экране больше не появляется – вместо нее мы видим две яркие полосы примерно напротив обеих щелей. Эта картина отражает два главных пути частицы к экрану. На языке Эверетта мы говорим, что среда, состоящая из частиц в окрестности щелей, выполнила акт наблюдения. Это привело к декогеренции волновых фрагментов на две ясно различающиеся истории – ветви реальности, – которые с этого момента развивались независимо. Мы могли бы сказать, что фактически газ задал вопрос: «Через какую из щелей прошел электрон?» – и что тем самым он вынудил волновую функцию электрона расщепиться на два разобщенных фрагмента, соответствующих двум возможным ответам.

Два варианта опыта с двойной щелью иллюстрируют два ключевых свойства схемы Эверетта. Первое: природа задаваемых нами вопросов влияет на структуру дерева независимых ветвей возможных исходов эксперимента. Второе: значимые предсказания в форме оценок разумных исходов, сумма вероятностей которых равна единице, могут быть сделаны только о независимых, декогерентных и существенно различных исторических траекториях. Мы вернемся к этому вопросу в главе 7, где я расскажу, что остается от мультивселенной, когда мы становимся на точку зрения квантовой космологии.


Рис. 42. Вариант эксперимента с двумя щелями: вблизи щелей находятся газовые облака частиц, которые взаимодействуют с электронами. Даже если эти столкновения не очень влияют на траектории электронов, они так или иначе устраняют слабые корреляции между всеми возможными путями частиц к экрану. Вследствие этого интерференционная картина разрушается и вместо нее на экране, примерно напротив щелей, появляются две яркие полосы, соответствующие двум главным путям к экрану. В квантовом смысле частицы газа выполняют акт наблюдения.


В макроскопическом мире процессы, вызывающие декогеренцию, поистине вездесущи. Ежесекундно наша окружающая среда выполняет бесчисленные акты наблюдения, уничтожая квантовую интерференцию и приводя мириады потенциальных возможностей к немногим реальным исходам. Таким образом, среда играет роль естественного мостика между призрачным микромиром суперпозиций и твердо определенным макромиром ежедневного опыта. Даже более того, процессы декогеренции в среде и есть то, что вообще делает довольно грубую классическую реальность возможной, несмотря на постоянные квантовые вибрации на микроскопических масштабах.

Возьмем высокоэнергетическую частицу, испущенную радиоактивным атомом, скажем, атомом урана в земной коре. Вначале эта частица существует как волновая функция, распространяющаяся во всех возможных направлениях; она остается не вполне реальной, пока не провзаимодействует, например, с куском кварца. Когда это случается, одна из множества возможных траекторий частицы сгущается в реальную. Взаимодействие с кварцем преобразует то, что могло бы случиться, в то, что на деле произошло, когда атом урана распался. Внутри любой данной ветви истории этот процесс проявляется как «замороженный случай» в структуре набора атомов, на который воздействовала высокоэнергетическая частица; треки таких частиц иногда используются для датировки минералов. Вселенная, которую мы видим вокруг – данная ветвь реальности, – есть коллективный результат бесчисленного количества таких актов наблюдения. Зафиксированный и выстроенный на протяжении миллиардов лет из неисчислимых случайных исходов, каждый из которых добавляет несколько бит информации в нашу ветвь истории, мир вокруг нас таким путем приобрел свою конкретную идентичность. Поэтому не следует удивляться тому, что в ходе нашего разговора Стивен заключил: взгляд на Вселенную с квантовых позиций вносит в космологию некий ретроградный, обращенный против движения времени элемент.