О происхождении времени. Последняя теория Стивена Хокинга — страница 8 из 69

ОБЪЯСНЯЯ «ПОЧЕМУ», МЫ ДОЛЖНЫ ДУМАТЬ КАК ФИЗИКИ – ПРОБИВАТЬСЯ СКВОЗЬ ВРЕМЯ, ЧТОБЫ ИДЕНТИФИЦИРОВАТЬ ПРИЧИННЫЕ, ДЕТЕРМИНИСТСКИЕ СВЯЗИ, ПРИ ПОМОЩИ КОТОРЫХ МОЖНО ПРЕДСКАЗАТЬ ВЫБОР ОДНОГО КОНКРЕТНОГО ИСТОРИЧЕСКОГО ПУТИ ИЗ ВСЕХ ОСТАЛЬНЫХ.

Вообще говоря, мириады путей, широко открывающихся с любой точки истории – как истории человечества, так и биологической или астрофизической эволюции, – говорят о том, что детерминистские объяснения работают только на очень грубом уровне. На любой стадии эволюции детерминизм и причинность формируют лишь наиболее общие структурные тренды и особенности, часто обусловленные законами, действующими на более низком уровне сложности. Полная неожиданных изгибов и поворотов история человечества, например, до сих пор в основном разыгрывалась в пределах планеты Земля – не считая нескольких кратковременных контактов посредством космических аппаратов с другими телами Солнечной системы. Это неудивительно – и значит, вполне предсказуемо; ведь человечество существует в определенной физической и геологической среде. Но этот факт не скажет нам ничего об особенностях какой-либо конкретной исторической эпохи.

Подобным же образом порядок расположения химических элементов и структура Периодической таблицы Менделеева, в сущности, жестко определяются законами физики частиц на более фундаментальном уровне. Но конкретные обилия этих элементов на Земле определяются бесчисленными случайностями геологического развития в том или ином месте.

На биологическом уровне вся жизнь на Земле основана на молекулах ДНК, а гены состоят из четырех нуклеотидов, обозначаемых A, C, G и T. Конкретный состав «строительных кирпичиков» молекулы ДНК, вероятно, является случайным исходом абиогенеза на нашей планете. Но базовая способность к вычислениям, которой жизнь должна овладеть, чтобы поддерживать свое существование, лежит на более глубоком уровне. Исходя из еще более глубоких математических и физических принципов, она вполне может определять широкие структурные свойства молекулярного переносчика генетической информации. Это подтверждается теоретическими работами по конструированию самовоспроизводящихся автоматов, выполненными в 1948 году американским математиком венгерского происхождения Джоном фон Нейманом. За пять лет до открытия Уотсоном и Криком структуры ДНК фон Нейман идентифицировал критические вычислительные задачи, которые жизнь должна решить для обеспечения своего существования, и определил сложно устpoенную структуру – по всей видимости, единственно возможную, – обладающую способностью самовоспроизводства. Очерченная им структура мгновенно распознается как ДНК.

Эволюция постоянно создает гигантскую цепь «замороженных случаев». Низкие уровни сложности задают среду существования более высоких уровней эволюции. Но при этом все равно остается столько места для неожиданных поворотов и скачков, что часто реализуются самые невероятные ответвления – и детерминизм терпит крах. Случайные исходы бесчисленных событий ветвления вносят в ход эволюции элемент принципиальной непредсказуемости. Они несут с собой огромное количество структурных и информационных изменений, не выводимых из законов более низкого уровня, и на более высоких уровнях эти изменения могут создавать – и часто создают – новые имеющие вид законов соответствия. Например, хотя сегодня ни один серьезный ученый не верит в существование в биологии особых «жизненных сил», не имеющих какого бы то ни было физико-химического происхождения, физика сама по себе все же не определяет действующие на Земле биологические законы.

• • •

Всего через восемнадцать дней после того, как 24 ноября 1859 года был опубликован капитальный труд «О происхождении видов», Чарльз Дарвин получил письмо от астронома сэра Джона Фредерика Уильяма Гершеля. Сын открывателя Урана выразил свой скептицизм по поводу произвольности дарвиновской картины эволюции – по его выражению, книга Дарвина провозглашает «закон тяп-ляп (the law of higgledy-piggledy)»[18]. Но в этом-то и сила! Красота теории Дарвина в том, что она предлагает в качестве силы, которая управляет миром живого, синтез состязающихся друг с другом сил случайных изменений и отбора под влиянием окружающей среды. Дарвин нащупал в биологии золотую середину между «почему» и «как», объединив в гармоничную схему причинные объяснения с индуктивной логикой. Он показал, что, несмотря на свою изначально историческую и случайную природу, биология может быть доказательной и плодотворной наукой, которая углубляет наше понимание мира живого.

Дарвинизм продолжил научную революцию. Он распространил ее на единственную область знаний, в которой телеологическая точка зрения казалась незыблемой, – на мир живого. Но мировоззрение, которое излучает дарвинизм, полярно противоположно тому, на котором основана фундаментальная физика. Это особенно ярко проявляется в их радикально противоположном подходе к загадке «мирового замысла». В то время как дарвинизм предлагает насквозь эволюционное понимание видимого строения мира живого, физика и космология для объяснения возможности перехода от неживого к живому обращаются в первую очередь к природе вневременных математических законов. Как специалисты в области наук о жизни, так и физики часто противопоставляют «тяп-ляп»-схему дарвиновской эволюции – жесткости и незыблемости законов физики. Считается, что на глубинном уровне физикой управляют не история и эволюция, но вневременная и вечная математическая красота. Грандиозное достижение Леметра – понимание того, что Вселенная расширяется, – конечно, внесло в космологию сильный эволюционный мотив. Но на более глубоком уровне, там, где дело касается «загадки замысла», оказывается, что схемы Леметра и Дарвина (на вклейке – рис. 3 и 4, соответственно) транслируют фундаментально различные мировоззрения. Эта глубочайшая концептуальная пропасть разделяла биологию и физику с самого начала научной революции.

Перекинуть мост через эту пропасть Стивен стремился с самых первых своих шагов в науке. Но реальная исследовательская программа достижения этой цели у него выкристаллизовалась только к концу XX века, когда бо́льшая часть его усилий оказалась направлена на решение загадки «космического замысла». Он задумал ни больше ни меньше, чем попытаться взорвать космологию изнутри.

Вспомним эти золотые годы. Неожиданное экспериментальное открытие ускорения расширения Вселенной, казалось, откликалось на столь же ошеломляющие теоретические результаты, из которых следовало, что законы физики, возможно, вовсе не похожи на скрижали, навечно высеченные в камне. Росло число свидетельств того, что по крайней мере некоторые особенности физических законов, возможно, являются не математически необходимыми, а случайными, отражающими конкретный характер остывания этой Вселенной после горячего Большого взрыва. Из исследований элементарных частиц, основных видов взаимодействий, количества темной энергии становилось очевидно, что многие из дружественных жизни свойств Вселенной, возможно, не были изначально заложены в ней при рождении, как клеймо изготовителя, а сохранились со времен ее ранней эволюции, а корни их глубоко спрятаны в глубинах Большого взрыва.

Вскоре у теоретиков, разрабатывающих теорию струн, начала вырисовываться пестрая картина мультивселенной – гигантского раздувающегося пространства, содержащего лоскутную мозаику островных вселенных, каждая со своей собственной физикой. Это привело к кардинальному изменению угла зрения, под которым рассматривалась «тонкая настройка» космоса. Вместо того чтобы оплакивать расставание с мечтой о единой и окончательной теории, которая предсказала бы, каким должен быть мир, сторонники идеи мультивселенной пытались превратить эту досадную неудачу в победу, преобразуя космологию в науку об окружающей среде (даром, что эта среда оказывалась уж очень обширной!) Один из этих теоретиков уподобил локальный характер физических законов в мультивселенной погоде на Восточном побережье США: «Умопомрачительно непостоянная, почти всегда ужасная, но в редких случаях – просто чудесная»[19].

Мы можем почувствовать масштаб этой перемены на примере из истории науки. В XVII веке немецкий астроном Иоганн Кеплер предложил модель Солнечной системы, проистекающую из античного учения Платона об основных геометрических телах – пяти правильных многогранниках, начиная со всем известного куба. Кеплер представил себе, что приблизительно круговые орбиты шести известных тогда планет проходят по невидимым сферам, обращающимся вокруг Солнца. Затем он высказал следующую гипотезу: относительные размеры этих сфер продиктованы условием, что каждая такая сфера, кроме самой внешней из них, сферы Сатурна, вписана в один из этих пяти многогранников, и каждая сфера, кроме самой внутренней, сферы Меркурия, описана вокруг одного из них[20]. Рис. 6 воспроизводит чертеж, которым Кеплер иллюстрирует эту конфигурацию. Когда Кеплер поместил эти пять геометрических тел в правильном порядке, причем все они оказались точно вписаны друг в друга, он обнаружил, что вложенные в них сферы можно разместить на интервалах, соответствующих расстояниям планет от Солнца, причем Сатурн будет двигаться по сфере, описанной вокруг самого внешнего из многогранников, и не будет никаких зазоров для изменения относительных радиусов сфер. На основе своей схемы он предсказал общее количество планет – шесть, – а также относительные размеры их орбит. Для Кеплера число планет и их расстояния от Солнца были проявлением глубокой математической симметрии Природы. Его труд Mysterium Cosmographicum представляет собой попытку на деле согласовать древнюю мечту Платона о гармонии сфер с установившимся в XVI столетии пониманием, что планеты обращаются вокруг Солнца.

Во времена Кеплера Солнечную систему в целом рассматривали как аналог всей Вселенной. Никто тогда не знал, что звезды – это солнца со своими планетными системами. Поэтому было вполне естественно предполагать, что планетные орбиты играли во Вселенной фундаментальную роль. Сегодня мы знаем, что количество планет в Солнечной системе или их расстояния от Солнца не имеют никакого глубокого значения. Мы понимаем, что набор планет Солнечной системы не уникален и даже не представляет собой какого-то специфического частного случая, а просто является случайным исходом истории образования Солнечной системы из завихрений газопылевой туманности, вращающейся вокруг прото-Солнца. За последние три десятилетия астрономы наблюдали тысячи планетных систем с широким диапазоном различных орбитальн