Об идолах и идеалах — страница 29 из 48

Упомянутая публика, случись ей это услышать, наверняка возмутится: «Да он хочет оправдать убийцу!»...

Вспоминается же мне один бургомистр, который в дни моей юности обратился с жалобой на писателей: они, мол, докатились уже до того, что стали подрывать основы христианства и правопорядка; один из них даже защищает самоубийство; страшно вымолвить!

Из дальнейших пояснений потрясенного бургомистра стало ясно, что речь идет о «Страданиях молодого Вертера».

Это и называется мыслить абстрактно – не видеть в убийце ничего сверх того абстрактного, что он – убийца, и гасить посредством этого простого качества все прочие качества человеческого существа в преступнике.

... – Эй, старая, ты торгуешь тухлыми яйцами, – сказала покупательница торговке. «Что?! –[190] вспылила та. – Мои яйца тухлые? Сама ты тухлая! Ты мне смеешь говорить такое про мой товар? Да сама-то ты кто? Твоего папашу вши заели, а мамаша твоя с французами амуры крутила! Ты, у которой бабка в богадельне сдохла! Ишь, целую простыню на платок извела! Известно, небось, откуда у тебя все эти тряпки да шляпки! Если бы не офицеры, такие, как ты, не щеголяли бы в нарядах! Порядочные-то женщины больше за своим домом смотрят, а таким, как ты – самое место в каталажке! Дырки бы лучше на чулках заштопала!» – Короче говоря, она ни капельки хорошего не может допустить в обидчице.

Она и мыслит абстрактно – подытоживает все, начиная с шляпок и кончая чулками, с головы до пят, вкупе с папашей и всей остальной родней покупательницы, исключительно в свете того преступления, что та нашла ее яйца несвежими. Все оказывается окрашено в цвет этих тухлых яиц, тогда как те офицеры, о которых упомянула торговка, если они, конечно, вообще имеют сюда какое-нибудь отношение, что весьма сомнительно, предпочли бы заметить в женщине совсем другие вещи...»

Притча, кажется, не нуждается в особо пространных комментариях и выводах. Автор ее – диалектик Гегель – иллюстрирует ею очень простое и глубоко верное, хотя и парадоксальное, на первый взгляд, утверждение: Кто мыслит абстрактно? – Необразованный человек.

Человек, обладающий умственной культурой, никогда не мыслит абстрактно по причине «внутренней пустоты и никчемности этого занятия». Он никогда не успокаивается на тощем словесном определении («убийца» и т.п.), а старается всегда рассмотреть самую вещь во всех ее «опосредствованиях», связях и отношениях, и притом – в развитии.[191]

Такое-то – культурное, грамотное и гибкое предметное мышление философия и называет конкретным. Такое мышление всегда руководится собственной логикой вещей, а не узкокорыстным (субъективным) интересом, пристрастием или отвращением. Оно ориентировано на объективные характеристики явления, на раскрытие их необходимости – закона, а не на случайно выхваченные, не на бросающиеся в глаза мелочи, будь они в сто раз нагляднее.

Абстрактное же мышление ограничивается общими словечками, зазубренными терминами и фразами и потому в богатом составе явлений действительности усматривает очень и очень мало. Только то, что «подтверждает», дает «наглядное доказательство» застрявшей в голове догме, общему представлению, а часто – и просто эгоистически-узкому интересу.

Абстрактное мышление – вовсе не достоинство, как иногда думают, связывая с этим термином представление о «высокой науке», как о системе архинепонятных абстракций, парящих где-то в заоблачных высях. Такое представление о науке свойственно лишь тем, кто имеет представление о ней с чужих слов, знает терминологическую поверхность научного процесса и не вникал в его суть.

Наука, действительная наука, а не система квазинаучных терминов и фраз – есть всегда выражение (отражение) фактов, понятых в их собственной связи. Понятие – в отличие от термина, требующего простого заучивания, – синоним понимания существа фактов. И оно всегда конкретно, в смысле предметно. Оно вырастает из фактов и только в фактах и через факты имеет смысл, значение, содержание.

Таково и мышление математика, которое невольно оскорбляют, желая похвалить, словечком «абстрактное». Абстрактно здесь лишь[192] терминологическое одеяние «понятий», лишь язык математики. И если из всей математики человек усвоил лишь ее «язык», то, значит, он усвоил ее абстрактно. Значит, не понимая и не усматривая ее действительного предмета и не умея самостоятельно двигаться по его строгой логике, он не видит реальности под специально-математическим углом зрения, а видит только обозначающие ее знаки. Может быть еще и наглядные примеры, иллюстрирующие «применение» знаков.

Настоящий математик мыслит в полной мере конкретно, как и физик, биолог, историк. Он рассматривает тоже не абстрактные закорючки, а самую настоящую действительность, только под особым углом зрения, свойственным математике. Умение видеть окружающий мир под углом зрения количества и составляет специальную черту мышления математика. В противном случае мы имеем дело не с математиком, а лишь со счетчиком-вычислителем, осуществляющим лишь штампованные вспомогательные операции, но не развитие математической науки.

И воспитать математика, человека, умеющего мыслить в области математики, далеко не то же самое, что научить считать, вычислять, решать типовые задачи.

И ведь математика как наука ничуть не сложнее других наук, которые не кажутся столь таинственно абстрактными. В известном смысле математическое мышление даже проще, легче. В самом деле, математические «таланты» и даже «гении» развиваются в таком возрасте, который в других науках явно не дает возможности даже просто выйти на «передний край». Математика предполагает меньший и более простой «опыт» в отношении окружающего мира, чем та же политическая экономия, биология или ядерная физика. Посему в биологии, например,[193] «гения» в пятнадцатилетнем возрасте и не встретишь.

И сравнительно малый процент способных к математическому мышлению мы получаем до сих пор вовсе не потому, что матушка-природа столь скупа на раздачу математических способностей, а совсем по другой причине. А прежде всего потому, что в сферу математического мышления мы зачастую вводим маленького человека вверх ногами, задом наперед. Потому, что с первых же дней вбиваем ему в голову иной раз такие представления о математических понятиях, которые не помогают, а, как раз наоборот, мешают ему увидеть, правильно рассмотреть окружающий его мир под непривычным для него строго-математическим углом зрения.

Способными же в итоге оказываются те дети, которые по какому-то счастливому стечению обстоятельств умудряются все-таки выглянуть в «окно», забитое досками неверных представлений. Где-то между этими досками сохраняются «щели», в которые пытливый ребенок иной раз и заглядывает. И оказывается способным...

А неверные представления об исходных математических понятиях органически связаны с теми антикварными философско-гносеологическими представлениями о понятиях вообще и об их отношениях с реальностью, с которыми научная философия давно разделалась и распрощалась.

Философско-логический анализ старой методики обучения первоклассников, которая вводила их в царство математических понятий, бесспорно подтверждает высказанное положение. В этом случае ребенку внушали просто неверное (с точки зрения самой математики) представление о числе.

Как сплошь и рядом до самого последнего[194] времени задавалось ребенку «понятие» числа – фундаментального и самого общего основания всех его дальнейших шагов в области математического мышления?

Сначала очень натурально и наглядно рисовали мячик, рядом с ним – девочку, яблоко (или вишенку), жирную палочку (или точку), и, наконец, цифровой знак единицы.

Затем – две куклы, два мальчика, два арбуза, две точки и цифра 2. И так далее, вплоть до десяти, до предела, назначенного дидактикой для первоклассника сообразно с его возрастными («природными») возможностями...

Предполагалось, что, усвоив все это, ребенок усвоит счет, а вместе с ним «понятие» числа.

Умение считать он, действительно, таким образом усваивал. Но вот что касается «понятия» числа, то вместо него ребенок незаметно для себя проглатывал совершенно абстрактное представление о числе, такое представление, которое даже хуже тех обывательских, донаучных представлений, с которыми он приходит в школу.

Если бы первоклассник обладал достаточными аналитическими способностями, то на вопрос: «Что такое число?» он ответил бы примерно следующее. Число есть название, выражающее то абстрактно-общее, что имеют между собой все единичные вещи. Исходная цифра натурального ряда – название единичной вещи, двойка – двух единичных вещей и т.д. Единичная же вещь – это то, что я вижу в пространстве как резко и отчетливо отграниченное, «вырезанное» контуром из всего остального, окружающего ее, мира, – будь то контур мячика или шагающего экскаватора, девочки или тарелки с супом. Недаром, чтобы проверить, усвоил ли ребенок[195] школьную премудрость, ему показывали предмет (безразлично какой) и спрашивали: «Сколько?», желая услышать в ответ – один (одна, одно)». А далее – два, три и т.д.

Но ведь любой мало-мальски грамотный в математике человек рассмеется, услышав такое объяснение числа, по праву расценит его как детски наивное и неверное. А как же иначе, если частный случай числового выражения действительности ребенок вынужден усваивать как самый общий, как представление о числе вообще.

В итоге же получалось, что уже ближайшие шаги в сфере математического мышления, которые он неуверенно делает под присмотром учителя, заводят его в тупик и сбивают с толку. Скоро обнаруживалось, что единичный предмет, который ему показывают, вовсе не обязательно называется словечком один, а может быть и два (две половинки), и три, и восемь, и вообще сколько угодно и что число 1 есть все что угодно, но только не название единичной, чувственно воспринимаемой «вещи». А чего же? Какую реальность обозначают числовые знаки?

Теперь бессильным окажется даже ребенок, обладающий самыми тонкими и гениальными аналитическими способностями... И потому только, что в его голове отложились два взаимоисключающих представления о числе, которые он никак не соотносит, не «опосредствует». Они просто находятся рядом, как два стереотипа, что очень легко выявить; столкнув их в «сшибке», в открытом противоречии.