Примечания
1
Ниже приведен неполный список книг, статей и онлайн-ресурсов, которые могут быть источником дополнительной информации о ряде идей и концепций, изложенных в книге. Это не исчерпывающий список, но он поможет вам начать с новой точки зрения и жить в соответствии с принципами книги. Многие цитаты взяты из исследований, упомянутых или подробно описанных в тексте. Эти материалы также могут стать основой дальнейших исследований. Если вы не увидите ссылку, упомянутую в книге, посетите сайт DrPerlmutter.com, где вы получите доступ к дополнительным исследованиям и обновляемому списку ссылок.
Peterattiamd.com.
2
Здесь и далее автор говорит об уровнях тех или иных показателей во множественном числе, поскольку концентрация в крови меняется много раз в течение дня и замер в конкретное время не отражает всей картины. Прим. пер.
3
Centers for Disease Control and Prevention (cdc.gov); American Heart Association (heart.org).
4
Hidden in Plain Sight // SugarScience, University of California at San Francisco // sugarscience.ucsf.edu/hidden-in-plain-sight/.
5
Haig A. Uric Acid as a Factor in the Causation of Disease: A Contribution to the Pathology of High Arterial Tension, Headache, Epilepsy, Mental Depression, Paroxysmal Hæmoglobinuria and Anæmia, Bright’s Disease, Diabetes, Gout, Rheumatism, and Other Disorders. London: Franklin Classics, 2018. См. также Haig A. Uric Acid as a Factor in the Causation of Disease — A Contribution to the Pathology of High Blood Pressure, Headache, Epilepsy, Mental Depression, Paroxysmal Hemoglobinuria and Anemia, Bright’s Disease, Gout, Rheumatism and other Disorders // JAMA. 1898. Vol. 31. № 3. P. 139 // doi.org/10.1001/jama.1898.02450030041022.
6
Fragkou Th., Goula K., Drakoulogkona O. The History of Gout Through Centuries // Nephrology Dialysis Transplantation. 2015. May. Vol. 30. Suppl. 3. Pp. iii377–iii380 // doi.org/10.1093/ndt/gfv186.05.
7
Oxford English Dictionary, 2nd ed. Oxford, UK: Oxford University Press, 2004.
8
Nuki G., Simkin P. A. A Concise History of Gout and Hyperuricemia and Their Treatment // Arthritis Research & Therapy. 2006. Vol. 8. Suppl. 1. P. S1 // doi.org/10.1186/ar1906.
9
Maurer J. Early Gout Is Bad for the Heart: Recent Research Context // Med-Page Today, November 28, 2019 // medpagetoday.com/reading-room/acrr/generalrheumatology/83581. См. также Li Y. et al. Clinical Characteristics of Early-Onset Gout in Outpatient Setting // ACR Open Rheumatology. 2019. Vol. 1. № 7. Pp. 397–402 // doi.org/10.1002/acr2.11057.
10
Singh J. A. Gout: Will the “King of Diseases” Be the First Rheumatic Disease to Be Cured? // BMC Medicine. 2016. Vol. 14. P. 180 // doi.org/10.1186/s12916-016-0732-1.
11
George Ch., Minter D. A. Hyperuricemia // StatPearls. Treasure Island, FL: 2021 // ncbi.nlm.nih.gov/books/NBK459218/.
12
Chen J.-H. et al. Serum Uric Acid Level as an Independent Risk Factor for All-Cause, Cardiovascular, and Ischemic Stroke Mortality: A Chinese Cohort Study // Arthritis & Rheumatology. 2009. February. Vol. 61. № 2. Pp. 225–232 // doi.org/10.1002/art.24164. См. также Prado de Oliveira E., Burini R. C. High Plasma Uric Acid Concentration: Causes and Consequences // Diabetology & Metabolic Syndrome. 2012. April. Vol. 4. P. 12 // doi.org/10.1186/1758-5996-4-12.
13
El Ridi R., Tallima H. Physiological Functions and Pathogenic Potential of Uric Acid: A Review // Journal of Advanced Research. 2017. September. Vol. 8. № 5. Pp. 487–493 // doi.org/10.1016/j.jare.2017.03.003.
14
El Ridi and Tallima, Physiological Functions and Pathogenic Potential of Uric Acid.
15
DiNicolantonio J. J., O’Keefe J. H., Lucan S. C. Added Fructose: A Principal Driver of Type 2 Diabetes Mellitus and Its Consequences // Mayo Clinic Proceedings. 2015. March. Vol. 90. № 3. Pp. 372–381 // doi.org/10.1016/j.mayocp.2014.12.019.
16
Stirpe F. et al. Fructose-induced Hyperuricaemia // The Lancet. 1970. December. Vol. 296. № 7686. Pp. 1310–1311 // doi.org/10.1016/s0140-6736(70)92269-5.
17
Goran M. I. et al. The Obesogenic Effect of High Fructose Exposure During Early Development // Nature Reviews Endocrinology. 2013. August. Vol. 9. № 8. Pp. 494–500.
18
Rivard Ch. et al. Sack and Sugar, and the Aetiology of Gout in England Between 1650 and 1900 // Rheumatology. 2013. March. Vol. 52. № 3. Pp. 421–426 // doi.org/10.1093/rheumatology/kes297.
19
Zgaga L. et al. The Association of Dietary Intake of Purine-Rich Vegetables, Sugar-Sweetened Beverages and Dairy with Plasma Urate, in a Cross-Sectional Study // PLOS ONE. 2012. Vol. 7. № 6. P. e38123 // doi.org/10.1371/journal.pone.0038123.
20
Singh J. A., Reddy S. G., Kundukulam J. Risk Factors for Gout and Prevention: A Systematic Review of the Literature // Current Opinion in Rheumatology. 2011. March. Vol. 23. № 2. Pp. 192–202 // doi.org/10.1097/BOR.0b013e3283438e13.
21
LUV созвучно английскому слову love (любовь). Прим. пер.
22
Выражение автора, означающее, что мочевая кислота разрушает организм, как бомба. Прим. пер.
23
Enzinger Ch. et al. Risk Factors for Progression of Brain Atrophy in Aging: Six-Year Follow-Up of Normal Subjects // Neurology. 2005. May 24. Vol. 64. № 10. Pp. 1704–1711 // doi.org/10.1212/01.WNL.0000161871.83614.BB.
24
Crane P. K. et al. Glucose Levels and Risk of Dementia // New England Journal of Medicine. 2013. August. Vol. 369. № 6. Pp. 540–548 // doi.org/10.1056/NEJMoa1215740.
25
Van Pelt G. W. A Study of Haig’s Uric Acid Theory // Boston Medical and Surgical Journal. 1896. Vol. 134. № 6. Pp. 129–134 // doi.org/10.1056/NEJM189602061340601.
26
Johnson R. J. et al. Lessons from Comparative Physiology: Could Uric Acid Represent a Physiologic Alarm Signal Gone Awry in Western Society? // Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. 2009. January. Vol. 179. № 1. Pp. 67–76 // doi.org/10.1007/s00360-008-0291-7.
27
Framingham Heart Study // framinghamheartstudy.org.
28
Culleton B. F. et al. Serum Uric Acid and Risk for Cardiovascular Disease and Death: The Framingham Heart Study // Annals of Internal Medicine. 1999. July. Vol. 131. № 1. Pp. 7–13 // doi.org/10.7326/0003-4819-131-1-199907060-00003.
29
Неполный список исследовательских работ доктора Ричарда Джонсона есть на его странице scholar.google.com/citations?user=dTgECeMAAAAJ&hl=en.
30
Johnson R. J., Andrews P. The Fat Gene // Scientific American. 2015. October. Vol. 313. № 4. Pp. 64–69 // doi.org/10.1038/scientificamerican1015-64.
31
Johnson and Andrews. The Fat Gene.
32
Johnson and Andrews. The Fat Gene.
33
Feig D. I., Soletsky B., Johnson R. J. Effect of Allopurinol on Blood Pressure of Adolescents with Newly Diagnosed Essential Hypertension: A Randomized Trial // JAMA. 2008. August. Vol. 300. № 8. Pp. 924–932 // doi.org/10.1001/jama.300.8.924.
34
Kanbay M. et al. A Randomized Study of Allopurinol on Endothelial Function and Estimated Glomular Filtration Rate in Asymptomatic Hyperuricemic Subjects with Normal Renal Function // Clinical Journal of the American Society of Nephrology. 2011. August. Vol. 6. № 8. Pp. 1887–1894 // doi.org/10.2215/CJN.11451210. См. также George J., Struthers A. D. Role of Urate, Xanthine Oxidase and the Effects of Allopurinol in Vascular Oxidative Stress // Vascular Health and Risk Management. 2009. Vol. 5. № 1. Pp. 265–272 // doi.org/10.2147/vhrm.s4265; Muir S. W. et al. Allopurinol Use Yields Potentially Beneficial Effects on Inflammatory Indices in Those with Recent Ischemic Stroke: A Randomized, Double-Blind, Placebo-Controlled Trial // Stroke. 2008. December. Vol. 39. № 12. Pp. 3303–3307 // doi.org/10.1161/STROKEAHA.108.519793; Dawson J. et al. The Effect of Allopurinol on the Cerebral Vasculature of Patients with Subcortical Stroke; a Randomized Trial // British Journal of Clinical Pharmacology. 2009. November. Vol. 68. № 5. Pp. 662–668 // doi.org/10.1111/j.1365–2125.2009.03497.x; García-Arroyo F. E. et al. Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats // Biomolecules. 2019. October. Vol. 9. № 10. P. 601 // doi.org/10.3390/biom9100601; Singh J. A., Yu Sh. Allopurinol and the Risk of Stroke in Older Adults Receiving Medicare // BMC Neurology. 2016. September. Vol. 16. № 1. P. 164 // doi.org/10.1186/s12883-016-0692-2; Bove M. et al. An Evidence-Based Review on Urate-Lowering Treatments: Implications for Optimal Treatment of Chronic Hyperuricemia // Vascular Health and Risk Management. 2017. February. Vol. 13. Pp. 23–28 // doi.org/10.2147/VHRM.S115080.
35
Piani F., Cicero A. F. G., Borghi C. Uric Acid and Hypertension: Prognostic Role and Guide for Treatment // Journal of Clinical Medicine. 2021. January. Vol. 10. № 3. P. 448 // doi.org/10.3390/jcm10030448. См. также Xiong Q., Liu J., Xu Y. Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications // International Journal of Endocrinology. 2019. October. Article ID 9691345 // doi.org/10.1155/2019/9691345; Gill A. et al. Correlation of the Serum Insulin and the Serum Uric Acid Levels with the Glycated Haemoglobin Levels in the Patients of Type 2 Diabetes Mellitus // Journal of Clinical and Diagnostic Research. 2013. July. Vol. 7. № 7. Pp. 1295–1297 // doi.org/10.7860/JCDR/2013/6017.3121; Soltani Z. et al. Potential Role of Uric Acid in Metabolic Syndrome, Hypertension, Kidney Injury, and Cardiovascular Diseases: Is It Time for Reappraisal? // Current Hypertension Reports. 2013. June. Vol. 15. № 3. Pp. 175–181 // doi.org/10.1007/s11906-013-0344-5; Madero M. et al. A Pilot Study on the Impact of a Low Fructose Diet and Allopurinol on Clinic Blood Pressure Among Overweight and Prehypertensive Subjects: A Randomized Placebo Controlled Trial // Journal of the American Society of Hypertension. 2015. November. Vol. 9. № 11. Pp. 837–844 // doi.org/10.1016/j.jash.2015.07.008.
36
Kratzer J. T. et al. Evolutionary History and Metabolic Insights of Ancient Mammalian Uricases // Proceedings of the National Academy of Sciences (USA). 2014. March. Vol. 111. № 10. Pp. 3763–3768 // doi.org/10.1073/pnas.1320393111.
37
Rendeiro C. et al. Fructose Decreases Physical Activity and Increases Body Fat Without Affecting Hippocampal Neurogenesis and Learning Relative to an Isocaloric Glucose Diet // Scientific Reports. 2015. Vol. 5. P. 9589 // doi.org/10.1038/srep09589. См. также Beckman Institute for Advanced Science and Technology. Fructose Contributes to Weight Gain, Physical Inactivity, and Body Fat, Researchers Find // ScienceDaily, June 1, 2015 // sciencedaily.com/releases/2015/06/150601122540.htm.
38
Figlewicz D. P. et al. Effect of Moderate Intake of Sweeteners on Metabolic Health in the Rat // Physiology & Behavior. 2009. December. Vol. 98. № 5. Pp. 618–624 // doi.org/10.1016/j.physbeh.2009.09.016. См. также Aeberli I. et al. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men: A Randomized Controlled Trial // Diabetes Care. 2013. January. Vol. 36. № 1. Pp. 150–156 // doi.org/10.2337/dc12-0540.
39
Kanbay M. et al. Uric Acid in Metabolic Syndrome: From an Innocent Bystander to a Central Player // European Journal of Internal Medicine. 2016. April. Vol. 29. Pp. 3–8 // doi.org/10.1016/j.ejim.2015.11.026.
40
Konta T. et al. Association Between Serum Uric Acid Levels and Mortality: A Nationwide Community-Based Cohort Study // Scientific Reports. 2020. April. Vol. 10. № 1. P. 6066 // doi.org/10.1038/s41598-020-63134-0.
41
Chen J.-H. et al. Serum Uric Acid Level as an Independent Risk Factor for All-Cause, Cardiovascular, and Ischemic Stroke Mortality: A Chinese Cohort Study // Arthritis & Rheumatology. 2009. February. Vol. 61. № 2. Pp. 225–232 // doi.org/10.1002/art.24164.
42
Zhao Y.-C. et al. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Hypertension // Hypertension. 2020. February. Vol. 75. № 2. Pp. 275–284 // doi.org/10.1161/HYPERTENSIONAHA.119.13419. См. также Kasper P. et al. NAFLD and Cardiovascular Diseases: A Clinical Review // Clinical Research in Cardiology. 2021. July. Vol. 110. № 7. Pp. 921–937 // doi.org/10.1007/s00392-020-01709-7.
43
Younossi Z. M. Non-alcoholic Fatty Liver Disease — A Global Public Health Perspective // Journal of Hepatology. 2019. March. Vol. 70. № 3. Pp. 531–544 // doi.org/10.1016/j.jhep.2018.10.033.
44
Darmawan G., Hamijoyo L., Hasan I. Association Between Serum Uric Acid and Non-alcoholic Fatty Liver Disease: A Meta-Analysis // Acta Medica Indonesiana. 2017. April. Vol. 49. № 2. Pp. 136–147. См. также Margariti E. et al. Non-alcoholic Fatty Liver Disease May Develop in Individuals with Normal Body Mass Index // Annals of Gastroenterology. 2012. Vol. 25. № 1. Pp. 45–51; Oral A. et al. Relationship Between Serum Uric Acid Levels and Nonalcoholic Fatty Liver Disease in Non-obese Patients // Medicina. 2019. September. Vol. 55. № 9. P. 600 // doi.org/10.3390/medicina55090600.
45
Paschos P. et al. Can Serum Uric Acid Lowering Therapy Contribute to the Prevention or Treatment of Nonalcoholic Fatty Liver Disease? // Current Vascular Pharmacology. 2018. Vol. 16. № 3. Pp. 269–275 // doi.org/10.2174/1570161115666170621082237.
46
Spiga R. et al. Uric Acid Is Associated with Inflammatory Biomarkers and Induces Inflammation via Activating the NF-κB Signaling Pathway in HepG2 Cells // Arteriosclerosis, Thrombosis, and Vascular Biology. 2017. June. Vol. 37. № 6. Pp. 1241–1249 // doi.org/10.1161/ATVBAHA.117.309128. См. также Tanaka T. et al. A Double Blind Placebo Controlled Randomized Trial of the Effect of Acute Uric Acid Changes on Inflammatory Markers in Humans: A Pilot Study // PLOS ONE. 2017. August. Vol. 12. № 8. P. e0181100 // doi.org/10.1371/journal.pone.0181100; Ruggiero C. et al. Uric Acid and Inflammatory Markers // European Heart Journal. 2006. May. Vol. 27. № 10. Pp. 1174–1181 // doi.org/10.1093/eurheartj/ehi879.
47
Gorman Ch., Park A., Dell K. Health: The Fires Within // Time. 2004. February 23. Vol. 163. № 8.
48
Gorman, Park, Dell. Health.
49
Gorman, Park, Dell. Health.
50
См. запись моего подкаста с доктором Людвигом от 3 января 2016 г. на Drperlmutter.com. Больше о докторе Людвиге и его работе см. Drdavidludwig.com.
51
Ruggiero C. et al. Usefulness of Uric Acid to Predict Changes in C-Reactive Protein and Interleukin-6 in 3-Year Period in Italians Aged 21 to 98 Years // American Journal of Cardiology. 2017. July. Vol. 100. № 1. Pp. 115–121 // doi.org/10.1016/j.amjcard.2007.02.065.
52
Rothenbacher D. et al. Relationship Between Inflammatory Cytokines and Uric Acid Levels with Adverse Cardiovascular Outcomes in Patients with Stable Coronary Heart Disease // PLOS ONE. 2012. Vol. 7. № 9. P. e45907 // doi.org/10.1371/journal.pone.0045907.
53
Pollock N. K. et al. Greater Fructose Consumption Is Associated with Cardiometabolic Risk Markers and Visceral Adiposity in Adolescents // Journal of Nutrition. 2012. February. Vol. 142. № 2. Pp. 251–257 // doi.org/10.3945/jn.111.150219. См. также Pacifico L. et al. Pediatric Nonalcoholic Fatty Liver Disease, Metabolic Syndrome and Cardiovascular Risk // World Journal of Gastroenterology. 2011. July. Vol. 17. № 26. Pp. 3082–3091; Zheng J. et al. Early Life Fructose Exposure and Its Implications for Long-Term Cardiometabolic Health in Offspring // Nutrients. 2016. November. Vol. 8. № 11. P. 685 // doi.org/10.3390/nu8110685; Couch S. C. et al. Fructose Intake and Cardiovascular Risk Factors in Youth with Type 1 Diabetes: SEARCH for Diabetes in Youth Study // Diabetes Research and Clinical Practice. 2013. May. Vol. 100. № 2. Pp. 265–271 // doi.org/10.1016/j.diabres.2013.03.013; Park B. et al. Association Between Serum Levels of Uric Acid and Blood Pressure Tracking in Childhood // American Journal of Hypertension. 2017. July. Vol. 30. № 7. Pp. 713–718 // doi.org/10.1093/ajh/hpx037.
54
Alper A. B. Jr. et al. Childhood Uric Acid Predicts Adult Blood Pressure: The Bogalusa Heart Study // Hypertension. 2005. January. Vol. 45. № 1. Pp. 34–38 // doi.org/10.1161/01.HYP.0000150783.79172.bb. См. также Increased Uric Acid Levels in Early Life May Lead to High Blood Pressure Later On // News-Medical.Net, March 15, 2017 // news-medical.net/news/20170315/Increased-uric-acid-levels-in-early-life-may-lead-to-high-blood-pressure-later-on.aspx.
55
Santos Araujo D. et al. Salivary Uric Acid Is a Predictive Marker of Body Fat Percentage in Adolescents // Nutrition Research. 2020. February. Vol. 74. Pp. 62–70 // doi.org/10.1016/j.nutres.2019.11.007.
56
Obesity and Overweight. National Center for Health Statistics // cdc.gov/nchs/fastats/obesity-overweight.htm.
57
Obesity and Overweight.
58
Ward Z. J. et al. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity // New England Journal of Medicine. 2019. December. Vol. 381. Pp. 2440–2450 // doi.org/10.1056/NEJMsa1909301.
59
Obesity and Overweight.
60
Obesity and Overweight.
61
Hirode G., Wong R. J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016 // JAMA. 2020. June. Vol. 323. № 24. Pp. 2526–2528 // doi.org/10.1001/jama.2020.4501.
62
Shi T. H., Wang B., Natarajan S. The Influence of Metabolic Syndrome in Predicting Mortality Risk Among US Adults: Importance of Metabolic Syndrome Even in Adults with Normal Weight // Preventing Chronic Disease. 2020. May. Vol. 17. P. E36 // doi.org/10.5888/pcd17.200020.
63
Johnson R. J.et al. Redefining Metabolic Syndrome as a Fat Storage Condition Based on Studies of Comparative Physiology // Obesity. 2013. April. Vol. 21. № 4. Pp. 659–664 // doi.org/10.1002/oby.20026.
64
Chatterjee Sh., Mudher A. Alzheimer’s Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits // Frontiers in Neuroscience. 2018. June. Vol. 12. P. 383 // doi.org/10.3389/fnins.2018.00383. См. также Yoon S. et al. Brain Changes in Overweight/Obese and Normal-Weight Adults with Type 2 Diabetes Mellitus // Diabetologia. 2017. Vol. 60. № 7. Pp. 1207–1217 // doi.org/10.1007/s00125-017-4266-7.
65
Barbiellini Amidei C. et al. Association Between Age at Diabetes Onset and Subsequent Risk of Dementia // JAMA. 2021. April. Vol. 325. № 16. Pp. 1640–1649 // doi.org/10.1001/jama.2021.4001.
66
Zheng F. et al. HbA1c, Diabetes and Cognitive Decline: the English Longitudinal Study of Ageing // Diabetologia. 2018. April. Vol. 61. № 4. Pp. 839–848 // doi.org/10.1007/s00125-017-4541-7.
67
Johnson R. J. et al. Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer’s Disease // Frontiers in Aging Neuroscience. 2020. September. Vol. 12. P. 560865 // doi.org/10.3389/fnagi.2020.560865.
68
Lohia P. et al. Metabolic Syndrome and Clinical Outcomes in Patients Infected with COVID-19: Does Age, Sex, and Race of the Patient with Metabolic Syndrome Matter? // Journal of Diabetes. 2021. January. Vol. 13. № 5. Pp. 420–429 // doi.org/10.1111/1753-0407.13157.
69
Chen B. et al. Serum Uric Acid Concentrations and Risk of Adverse Outcomes in Patients With COVID-19 // Frontiers in Endocrinology. 2021. May. Vol. 12. P. 633767 // doi.org/10.3389/fendo.2021.633767.
70
Taquet M. et al. 6-month Neurological and Psychiatric Outcomes in 236 379 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records // Lancet Psychiatry. 2021. May. Vol. 8. № 5. Pp. 416–427 // doi.org/10.1016/S2215-0366(21)00084-5.
71
Popkin B. M. et al. Individuals with Obesity and COVID-19: A Global Perspective on the Epidemiology and Biological Relationships // Obesity Reviews. 2020. November. Vol. 21. № 11. P. e13128 // doi.org/10.1111/obr.13128.
72
Hosseini-Esfahani F. et al. Dietary Fructose and Risk of Metabolic Syndrome in Adults: Tehran Lipid and Glucose Study // Nutrition & Metabolism. 2011. July. Vol. 8. № 1. P. 50 // doi.org/10.1186/1743-7075-8-50.
73
Billiet L. et al. Review of Hyperuricemia as New Marker for Metabolic Syndrome // ISRN Rheumatology. 2014. February. Article ID 852954 // doi.org/10.1155/2014/852954. См. также King Ch. et al. Uric Acid as a Cause of the Metabolic Syndrome // Contributions to Nephrology. 2018. Vol. 192. Pp. 88–102 // doi.org/10.1159/000484283; Kretowicz M. et al. The Impact of Fructose on Renal Function and Blood Pressure // International Journal of Nephrology. 2011. Article ID 315879 // doi.org/10.4061/2011/315879; Brown C. M. et al. Fructose Ingestion Acutely Elevates Blood Pressure in Healthy Young Humans // American Journal of Physiology — Regulatory, Integrative and Comparative Physiology. 2008. March. Vol. 294. № 3. Pp. R730–R737 // doi.org/10.1152/ajpregu.00680.2007; Klein A. V., Kiat H. The Mechanisms Underlying Fructose-Induced Hypertension: A Review // Journal of Hypertension. 2015. May. Vol. 33. № 5. Pp. 912–920 // doi.org/10.1097/HJH.0000000000000551.
74
Kanbay et al. Uric Acid in Metabolic Syndrome.
75
Sharaf El Din U. A. A., Salem M. M., Abdulazim D. O. Uric Acid in the Pathogenesis of Metabolic, Renal, and Cardiovascular Diseases: A Review // Journal of Advanced Research. 2017. September. Vol. 8. № 5. Pp. 537–548 // doi.org/10.1016/j.jare.2016.11.004. См. также Lee S. J., Oh B. K., Sung K.-C. Uric Acid and Cardiometabolic Diseases // Clinical Hypertension. 2020. June. Vol. 26. Article № 13 // doi.org/10.1186/s40885-020-00146-y; Nakagawa T. et al. Unearthing Uric Acid: An Ancient Factor with Recently Found Significance in Renal and Cardiovascular Disease // Kidney International. 2006. May. Vol. 69. № 10. Pp. 1722–1725 // doi.org/10.1038/sj.ki.5000391; Nakagawa T. et al. The Conundrum of Hyperuricemia, Metabolic Syndrome, and Renal Disease // Internal and Emergency Medicine. 2008. December. Vol. 3. № 4. Pp. 313–318 // doi.org/10.1007/s11739-008-0141-3.
76
Bahadoran Z. et al. Hyperuricemia-Induced Endothelial Insulin Resistance: The Nitric Oxide Connection // Pflügers Archiv: European Journal of Physiology. 2021. July // doi.org/10.1007/s00424-021-02606-2.
77
Wang H. et al. Nitric Oxide Directly Promotes Vascular Endothelial Insulin Transport // Diabetes. 2013. December. Vol. 62. № 12. Pp. 4030–4042 // doi.org/10.2337/db13-0627.
78
Gersch Ch. et al. Inactivation of Nitric Oxide by Uric Acid // Nucleosides, Nucleotides & Nucleic Acids. 2008. August. Vol. 27. № 8. Pp. 967–978 // doi.org/10.1080/15257770802257952. См. также Mercuro G. et al. Effect of Hyperuricemia Upon Endothelial Function in Patients at Increased Cardiovascular Risk // American Journal of Cardiology. 2004. October. Vol. 94. № 7. Pp. 932–935 // doi.org/10.1016/j.amjcard.2004.06.032.
79
Gill A. et al. Correlation of the Serum Insulin and the Serum Uric Acid Levels with the Glycated Haemoglobin Levels in the Patients of Type 2 Diabetes Mellitus // Journal of Clinical and Diagnostic Research. 2013. July. Vol. 7. № 7. Pp. 1295–1297 // doi.org/10.7860/JCDR/2013/6017.3121.
80
Joosten L. A. B. et al. Asymptomatic Hyperuricaemia: A Silent Activator of the Innate Immune System // Nature Reviews Rheumatology. 2020. February. Vol. 16. № 2. Pp. 75–86 // doi.org/10.1038/s41584-019-0334-3. См. также Cabău G. et al. Urate-Induced Immune Programming: Consequences for Gouty Arthritis and Hyperuricemia // Immunological Reviews. 2020. March. Vol. 294. № 1. Pp. 92–105 // doi.org/10.1111/imr.12833.
81
Salem S. et al. Serum Uric Acid as a Risk Predictor for Erectile Dysfunction // Journal of Sexual Medicine. 2014. May. Vol. 11. № 5. Pp. 1118–1124 // doi.org/10.1111/jsm.12495. См. также Solak Y. et al. Uric Acid Level and Erectile Dysfunction in Patients with Coronary Artery Disease // Journal of Sexual Medicine. 2014. January. Vol. 11. № 1. Pp. 165–172 // doi.org/10.1111/jsm.12332; Barassi A. et al. Levels of Uric Acid in Erectile Dysfunction of Different Aetiology // Aging Male. 2018. September. Vol. 21. № 3. Pp. 200–205 // doi.org/10.1080/13685538.2017.1420158.
82
Adamowicz J., Drewa T. Is There a Link Between Soft Drinks and Erectile Dysfunction? // Central European Journal of Urology. 2011. Vol. 64. № 3. Pp. 140–143 // doi.org/10.5173/ceju.2011.03.art8.
83
Русский аналог — «зона обитаемости». Прим. пер.
84
Cho S. K. et al. U-Shaped Association Between Serum Uric Acid Level and Risk of Mortality: A Cohort Study // Arthritis & Rheumatology. 2018. July. Vol. 70. № 7. Pp. 1122–1132 // doi.org/10.1002/art.40472.
85
Сью, скелет динозавра, был откопан в 1990 г. в Южной Дакоте. Как ее обнаружили и что было дальше — отдельная драматичная история, в которой присутствовали и тюремный срок для торговца окаменелостями, и захват силами ФБР и Национальной гвардии, и аукцион, где ее продали за 8,3 млн долларов. Сью Хендриксон, в честь которой назвали этого динозавра, нашла ее по выступу на скале, и теперь это один из крупнейших и лучше всего сохранившихся скелетов тираннозавра в мире. Сегодня Сью во всей ее ископаемой красе можно увидеть в Филдовском музее естественной истории в Чикаго. Прим. авт.
86
Browne M. W. Pity a Tyrannosaur? Sue Had Gout // New York Times, May 22, 1997.
87
Neel J. V. Diabetes Mellitus: A “Thrifty” Genotype Rendered Detrimental by “Progress”? // American Journal of Human Genetics. 1962. December. Vol. 14. № 4. Pp. 353–362.
88
Cordain L. et al. Origins and Evolution of the Western Diet: Health Implications for the 21st Century // American Journal of Clinical Nutrition. 2005. February. Vol. 81. № 2. Pp. 341–354 // doi.org/10.1093/ajcn.81.2.341.
89
Carrera-Bastos P. et al. The Western Diet and Lifestyle and Diseases of Civilization // Research Reports in Clinical Cardiology. 2011. Vol. 2. Pp. 15–35 // doi.org/10.2147/RRCC.S16919.
90
Pontzer H., Wood B. M., Raichlen D. A. Hunter-Gatherers as Models in Public Health // Obesity Reviews. 2018. December. Vol. 19. Suppl. 1. Pp. 24–35 // doi.org/10.1111/obr.12785.
91
Johnson and Andrews. The Fat Gene.
92
Johnson and Andrews. The Fat Gene.
93
Множество исследований описывают этот феномен; см. Cicerchi Ch. et al. Uric Acid-Dependent Inhibition of AMP Kinase Induces Hepatic Glucose Production in Diabetes and Starvation: Evolutionary Implications of the Uricase Loss in Hominids // FASEB Journal. 2014. August. Vol. 28. № 8. Pp. 3339–3350 // doi.org/10.1096/fj.13-243634. См. также Johnson R. J. et al. Uric Acid, Evolution and Primitive Cultures // Seminars in Nephrology. 2005. January. Vol. 25. № 1. Pp. 3–8 // doi.org/10.1016/j.semnephrol.2004.09.002.
94
Chan B. S. W. Ancient Insights into Uric Acid Metabolism in Primates // Proceedings of the National Academy of Sciences (USA). 2014. March. Vol. 111. № 10. Pp. 3657–3658 // doi.org/10.1073/pnas.1401037111.
95
Обратите внимание, что термины «соль» и «хлорид натрия» часто используются как синонимы, но, строго говоря, хлорид натрия обозначает минерал — один из двух, составляющих соль, кристаллическое вещество, широко применяемое в быту и кулинарии. Если не вдаваться в технические тонкости, то неважно, о чем именно мы говорим — о хлориде натрия или пищевой соли, поскольку в данной книге они обозначают одно и то же. Хлорид натрия — ингредиент соли, который оказывает влияние на организм. Прим. авт.
96
Johnson R. J. et al. Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors // Journal of the American Society of Nephrology. 2016. August. Vol. 27. № 8. Pp. 2247–2256 // doi.org/10.1681/ASN.2015121314. См. также Muscelli E. et al. Effect of Insulin on Renal Sodium and Uric Acid Handling in Essential Hypertension // American Journal of Hypertension. 1996. August. Vol. 9. № 8. Pp. 746–752 // doi.org/10.1016/0895-7061(96)00098-2.
97
Johnson R. J. et al. Fructose Metabolism as a Common Evolutionary Pathway of Survival Associated with Climate Change, Food Shortage and Droughts // Journal of Internal Medicine. 2020. March. Vol. 287. № 3. Pp. 252–262 // doi.org/10.1111/joim.12993.
98
В исследовании приводится множество ссылок на литературу большой давности, в этой литературе говорится о причастности фруктозы к гиперурикемии и развитию многих других патологий. Вот некоторые особо ценные: Perheentupa J., Raivio K. Fructose-Induced Hyperuricaemia // The Lancet. 1967. September. Vol. 290. № 7515. Pp. 528–531 // doi.org/10.1016/s0140-6736(67)90494-1; Nakagawa T. et al. A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome // American Journal of Physiology — Renal Physiology. 2006. March. Vol. 290. № 3. Pp. F625–F631 // doi.org/10.1152/ajprenal.00140.2005; Robertson S. High Uric Acid Precursor of Obesity, Metabolic Syndrome // News-Medical.Net, September 20, 2012 // news-medical.net/news/20120920/High-uric-acid-precursor-of-obesity-metabolic-syndrome.aspx; Livesey G., Taylor R. Fructose Consumption and Consequences for Glycation, Plasma Triacylglycerol, and Body Weight: Meta-analyses and Metaregression Models of Intervention Studies // American Journal of Clinical Nutrition. 2008. November. Vol. 88. № 5. Pp. 1419–1437; Food Insight. Questions and Answers About Fructose // September 29, 2009 / International Food Information Council Foundation // foodinsight.org/questions-and-answers-about-fructose/; Kuwabara M. et al. Asymptomatic Hyperuricemia Without Comorbidities Predicts Cardiometabolic Diseases: Five-Year Japanese Cohort Study // Hypertension. 2017. June. Vol. 69. № 6. Pp. 1036–1044 // doi.org/10.1161/HYPERTENSIONAHA.116.08998; Madero M. et al. The Effect of Two Energy-Restricted Diets, a Low-Fructose Diet Versus a Moderate Natural Fructose Diet, on Weight Loss and Metabolic Syndrome Parameters: A Randomized Controlled Trial // Metabolism. 2011. November. Vol. 60. № 11. Pp. 1551–1559 // doi.org/10.1016/j.metabol.2011.04.001; Choo V. L. et al. Food Sources of Fructose-Containing Sugars and Glycaemic Control: Systematic Review and Meta-analysis of Controlled Intervention Studies // The BMJ. 2018. November. Vol. 363. P. k4644 // doi.org/10.1136/bmj.k4644; Muraki I. et al. Fruit Consumption and Risk of Type 2 Diabetes: Results from Three Prospective Longitudinal Cohort Studies // The BMJ. 2013. August. Vol. 347. P. f5001 // doi.org/10.1136/bmj.f5001; Dhingra R. et al. Soft Drink Consumption and Risk of Developing Cardiometabolic Risk Factors and the Metabolic Syndrome in Middle-Aged Adults in the Community // Circulation. 2007. July. Vol. 116. № 5. Pp. 480–488 // doi.org/10.1161/CIRCULATIONAHA.107.689935; Semnani-Azad Zh. et al. Association of Major Food Sources of Fructose-Containing Sugars with Incident Metabolic Syndrome: A Systematic Review and Meta-analysis // JAMA Network Open. 2020. July. Vol. 3. № 7. P. e209993 // doi.org/10.1001/jamanetworkopen.2020.9993; Nseir W., Nassar F., Assy N. Soft Drinks Consumption and Nonalcoholic Fatty Liver Disease // World Journal of Gastroenterology. 2010. June. Vol. 16. № 21. Pp. 2579–2588 // doi.org/10.3748/wjg.v16.i21.2579; Soleimani M., Alborzi P. The Role of Salt in the Pathogenesis of Fructose-Induced Hypertension // International Journal of Nephrology. 2011. Article ID 392708 // doi.org/10.4061/2011/392708; DiNicolantonio J. J., Lucan S. C. The Wrong White Crystals: Not Salt but Sugar as Aetiological in Hypertension and Cardiometabolic Disease // Open Heart. 2014. November. Vol. 1. № 1. P. e000167 // doi.org/10.1136/openhrt-2014-000167; Purnell J. Q. et al. Brain Functional Magnetic Resonance Imaging Response to Glucose and Fructose Infusions in Humans // Diabetes, Obesity and Metabolism. 2011. March. Vol. 13. № 3. Pp. 229–234 // doi.org/10.1111/j.1463–1326.2010.01340.x.
99
Basu S. et al. The Relationship of Sugar to Population-Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross-Sectional Data // PLOS ONE. 2013. Vol. 8. № 2. P. e57873 // doi.org/10.1371/journal.pone.0057873.
100
SugarScience. How Much Is Too Much? The Growing Concern over Too Much Added Sugar in Our Diets / University of San Francisco // sugarscience.ucsf.edu/the-growing-concern-of-overconsumption.html#.YShIyVNKjX0.
101
Walker R. W., Dumke K. A., Goran M. I. Fructose Content in Popular Beverages Made with and Without High-Fructose Corn Syrup // Nutrition. 2014. July — August. Vol. 30. Nos. 7–8. Pp. 928–935 // doi.org/10.1016/j.nut.2014.04.003.
102
Casey J. P. High Fructose Corn Syrup — A Case History of Innovation // Research Management. 1976. September. Vol. 19. № 5. Pp. 27–32 // doi.org/10.1080/00345334.1976.11756374. См. также Newman K. The Secret Financial Life of Food: From Commodities Markets to Supermarkets. New York: Columbia University Press, 2013.
103
Rippe J. M., ed. Fructose, High Fructose Corn Syrup, Sucrose and Health. New York: Springer, 2014. См. также Segal M. S., Gollub E., Johnson R. J. Is the Fructose Index More Relevant with Regards to Cardiovascular Disease Than the Glycemic Index? // European Journal of Nutrition. 2007. October. Vol. 46. № 7. Pp. 406–417 // doi.org/10.1007/s00394-007-0680-9.
104
Gosling A. L., Matisoo-Smith E., Merriman T. R. Hyperuricaemia in the Pacific: Why the Elevated Serum Urate Levels? // Rheumatology International. 2014. June. Vol. 34. № 6. Pp. 743–757 // doi.org/10.1007/s00296-013-2922-x.
105
Senthilingam M. How Paradise Became the Fattest Place in the World // CNN.com, May 1, 2015 // cnn.com/2015/05/01/health/pacific-islands-obesity/index.html.
106
Senthilingham. How Paradise Became the Fattest Place in the World.
107
World Health Organization’s report Overweight and Obesity in the Western Pacific Region: An Equity Perspective. Manila: World Health Organization Regional Office for the Western Pacific, 2017.
108
Rose B. S. Gout in the Maoris // Seminars in Arthritis and Rheumatism. 1975. November. Vol. 5. № 2. Pp. 121–145 // doi.org/10.1016/0049-0172(75)90002-5.
109
Rose. Gout in the Maoris.
110
Sun H. et al. The Impact of Global and Local Polynesian Genetic Ancestry on Complex Traits in Native Hawaiians // PLOS Genetics. 2021. February. Vol. 17. № 2. P. e1009273 // doi.org/10.1371/journal.pgen.1009273. См. также Cui L. et al. Prevalence and Risk Factors of Hyperuricemia: Results of the Kailuan Cohort Study // Modern Rheumatology. 2017. November. Vol. 27. № 6. Pp. 1066–1071 // doi.org/10.1080/14397595.2017.1300117.
111
Hackethal V. Samoan “Obesity” Gene Found in Half of Population There // Medscape Medical News, August 3, 2016 // medscape.com/viewarticle/866987.
112
Merriman T. R., Dalbeth N. The Genetic Basis of Hyperuricaemia and Gout // Joint Bone Spine. 2011. January. Vol. 78. № 1. Pp. 35–40 // doi.org/10.1016/j.jbspin.2010.02.027.
113
Hughes R. G., Lawrence M. A. Globalization, Food and Health in Pacific Island Countries // Asia Pacific Journal of Clinical Nutrition. 2005. April. Vol. 14. № 4. Pp. 298–306.
114
Ali N. et al. Prevalence of Hyperuricemia and the Relationship Between Serum Uric Acid and Obesity: A Study on Bangladeshi Adults // PLOS ONE. 2018. November. Vol. 13. № 11. P. e0206850 // doi.org/10.1371/journal.pone.0206850. См. также Biradar M. I. et al. The Causal Role of Elevated Uric Acid and Waist Circumference on the Risk of Metabolic Syndrome Components // International Journal of Obesity. 2020. April. Vol. 44. № 4. Pp. 865–874 // doi.org/10.1038/s41366-019-0487-9.
115
Lanaspa M. A. et al. Opposing Activity Changes in AMP Deaminase and AMP-Activated Protein Kinase in the Hibernating Ground Squirrel // PLOS ONE. 2015. April. Vol. 10. № 4. P. e0123509 // doi.org/10.1371/journal.pone.0123509.
116
Lanaspa M. A. et al. Counteracting Roles of AMP Deaminase and AMP Kinase in the Development of Fatty Liver // PLOS ONE. 2012. Vol. 7. № 11. P. e48801 // doi.org/10.1371/journal.pone.0048801.
117
Перлмуттер Д. Кишечник и мозг. М.: Манн, Иванов и Фербер, 2016. Прим. ред.
118
Lv Q. et al. Association of Hyperuricemia with Immune Disorders and Intestinal Barrier Dysfunction // Frontiers in Physiology. 2020. November. Vol. 11. P. 524236 // doi.org/10.3389/fphys.2020.524236.
119
Guo Z. et al. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans // Scientific Reports. 2016. February. Vol. 6. P. 20602 // doi.org/10.1038/srep20602.
120
Melley B. Sugar and Corn Syrup Industries Square Off in Court Over Ad Claims // NBC News, November 2, 2015 // nbcnews.com/business/business-news/sugar-corn-syrup-industries-square-court-over-ad-claims-n455951. См. также McLaughlin L. Is High-Fructose Corn Syrup Really Good for You? // Time, September 17, 2008 // content.time.com/time/health/article/0,8599,1841910,00.html.
121
Резюме судебного процесса см. Lipton E. Rival Industries Sweet-Talk the Public // New York Times, February 11, 2014.
122
Heiss S. N., Bates B. R. When a Spoonful of Fallacies Helps the Sweetener Go Down: The Corn Refiner Association’s Use of Straw-Person Arguments in Health Debates Surrounding High-Fructose Corn Syrup // Health Communication. 2016. August. Vol. 31. № 8. Pp. 1029–1035 // doi.org/10.1080/10410236.2015.1027988.
123
Heiss S. N. “Healthy” Discussions About Risk: The Corn Refiners Association’s Strategic Negotiation of Authority in the Debate Over High Fructose Corn Syrup // Public Understanding of Science. 2013. February. Vol. 22. № 2. Pp. 219–235 // doi.org/10.1177/0963662511402281.
124
Gelski J. Sweet Ending: Sugar Groups, Corn Refiners Settle Lawsuit // Food Business News, November 20, 2015 // foodbusinessnews.net/articles/5376-sweet-ending-sugar-groups-corn-refiners-settle-lawsuit.
125
Abundance of Fructose Not Good for the Liver, Heart // Harvard Health Publishing, Harvard Medical School, September 1, 2011 // health.harvard.edu/heart-health/abundance-of-fructose-not-good-for-the-liver-heart.
126
Vos M. B. et al. Dietary Fructose Consumption Among US Children and Adults: The Third National Health and Nutrition Examination Survey // Medscape Journal of Medicine. 2006. July. Vol. 10. № 7. P. 160.
127
Ventura E. E., Davis J. N., Goran M. I. Sugar Content of Popular Sweetened Beverages Based on Objective Laboratory Analysis: Focus on Fructose Content // Obesity. 2011. April. Vol. 19. № 4. Pp. 868–874 // doi.org/10.1038/oby.2010.255.
128
Domonell K. Just How Bad Is Sugar for You, Really? // Right as Rain, University of Washington School of Medicine, October 30, 2017 // rightasrain.uwmedicine.org/body/food/just-how-bad-sugar-you-really. Также см. Associated Press. Just How Much Sugar Do Americans Consume? It’s Complicated // STAT, September 20, 2016 // statnews.com/2016/09/20/sugar-consumption-americans/.
129
Ayoub-Charette S. et al. Important Food Sources of Fructose-Containing Sugars and Incident Gout: A Systematic Review and Meta-analysis of Prospective Cohort Studies // BMJ Open. 2019. May. Vol. 9. № 5. P. e024171 // doi.org/10.1136/bmjopen-2018-024171. См. также Dalbeth N. et al. Body Mass Index Modulates the Relationship of Sugar-Sweetened Beverage Intake with Serum Urate Concentrations and Gout // Arthritis Research & Therapy. 2015. September. Vol. 17. № 1. P. 263 // https://pubmed.ncbi.nlm.nih.gov/26391224/.
130
Поллан М. Дилемма всеядного. Шокирующее исследование рациона современного человека. М.: Эксмо, 2017. Прим. ред.
131
Lustig R. H. The Fructose Epidemic // The Bariatrician. 2009. Spring. Pp. 10–19 // dustinmaherfitness.com/wp-content/uploads/2011/04/Bariatrician-Fructose.pdf.
132
Marshall R. O., Kooi E. R. Enzymatic Conversion of D-Glucose to D-Fructose // Science. 1957. April. Vol. 125. № 3249. Pp. 648–649 // doi.org/10.1126/science.125.3249.648.
133
High Fructose Corn Syrup Production Industry in the US — Market Research Report // IBISWorld.com (updated December 2020). См. также Popkin B. M., Hawkes C. Sweetening of the Global Diet, Particularly Beverages: Patterns, Trends, and Policy Responses // Lancet Diabetes Endocrinology. 2016. February. Vol. 4. № 2. Pp. 174–186 // doi.org/10.1016/S2213-8587(15)00419-2.
134
Després J.-P., Jebb S. Sugar-Sweetened Beverages: One Piece of the Obesity Puzzle? // Journal of Cardiovascular Magnetic Resonance. 2010. December. Vol. 3. № 3. Pp. 2–4. См. также Zhang D.-M., Jiao R.-Q., Kong L.-D. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions // Nutrients. 2017. March. Vol. 9. № 4. P. 335 // doi.org/10.3390/nu9040335.
135
DeSilver D. What’s on Your Table? How America’s Diet Has Changed Over the Decades // Pew Research Center, December 13, 2016 // pewresearch.org/fact-tank/2016/12/13/whats-on-your-table-how-americas-diet-has-changed-over-the-decades/.
136
Goran M. I., Ulijaszek S. J., Ventura E. E. High Fructose Corn Syrup and Diabetes Prevalence: A Global Perspective // Global Public Health. 2013. Vol. 8. № 1. Pp. 55–64 // doi.org/10.1080/17441692.2012.736257.
137
Shaw J. E., Sicree R. A., Zimmet P. Z. Global Estimates of the Prevalence of Diabetes for 2010 and 2030 // Diabetes Research and Clinical Practice. 2010. January. Vol. 87. № 1. Pp. 4–14 // doi.org/10.1016/j.diabres.2009.10.007.
138
Douard V., Ferraris R. P. The Role of Fructose Transporters in Diseases Linked to Excessive Fructose Intake // Journal of Physiology. 2013. January. Vol. 591. № 2. Pp. 401–414 // doi.org/10.1113/jphysiol.2011.215731. См. также Abdelmalek M. F. et al. Higher Dietary Fructose Is Associated with Impaired Hepatic Adenosine Triphosphate Homeostasis in Obese Individuals with Type 2 Diabetes // Hepatology. 2012. Vol. 56. № 3. Pp. 952–960 // doi.org/10.1002/hep.25741.
139
Lanaspa M. A. et al. Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver // PLOS ONE. 2012. Vol. 7. № 10. P. e47948 // doi.org/10.1371/journal.pone.0047948.
140
Я накопил множество исследований о влиянии фруктозы на организм. Вот несколько из них для начала: Stanhope K. L. et al. Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL–Cholesterol, and Apolipoprotein-B in Young Men and Women // Journal of Clinical Endocrinology and Metabolism. 2011. October. Vol. 96. № 10. Pp. E1596–E1605 // doi.org/10.1210/jc.2011–1251; Della Corte K. W. et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-analysis of Intervention Studies // Nutrients. 2018. May. Vol. 10. № 5. P. 606 // doi.org/10.3390/nu10050606; Rezvani R. et al. Effects of Sugar-Sweetened Beverages on Plasma Acylation Stimulating Protein, Leptin and Adiponectin: Relationships with Metabolic Outcomes // Obesity. 2013. December. Vol. 21. № 12. Pp. 2471–2480 // doi.org/10.1002/oby.20437; Ouyang X. et al. Fructose Consumption as a Risk Factor for Non-alcoholic Fatty Liver Disease // Journal of Hepatology. 2008. June. Vol. 48. № 6. Pp. 993–999 // doi.org/10.1016/j.jhep.2008.02.011; Elliott S. S. et al. Fructose, Weight Gain, and the Insulin Resistance Syndrome // American Journal of Clinical Nutrition. 2002. November. Vol. 76. № 5. Pp. 911–922 // doi.org/10.1093/ajcn/76.5.911; Ndrepepa G. Uric Acid and Cardiovascular Disease // Clinica Chimica Acta. 2018. September. Vol. 484. Pp. 150–163 // doi.org/10.1016/j.cca.2018.05.046; Abid A. et al. Soft Drink Consumption Is Associated with Fatty Liver Disease Independent of Metabolic Syndrome // Journal of Hepatology. 2009. November. Vol. 51. № 5. Pp. 918–924 // doi.org/10.1016/j.jhep.2009.05.033; Kelishadi R., Mansourian M., Heidari-Beni M. Association of Fructose Consumption and Components of Metabolic Syndrome in Human Studies: A Systematic Review and Meta-analysis // Nutrition. 2014. May. Vol. 30. № 5. Pp. 503–510 // doi.org/10.1016/j.nut.2013.08.014; Glushakova O. et al. Fructose Induces the Inflammatory Molecule ICAM-1 in Endothelial Cells // Journal of the American Society of Nephrology. 2008. September. Vol. 19. № 9. Pp. 1712–1720 // doi.org/10.1681/ASN.2007121304; Khitan Z., Kim D. H. Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension // Journal of Nutrition and Metabolism. 2013. Article ID 682673 // doi.org/10.1155/2013/682673; Johnson R. J. et al. Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes? // Endocrine Reviews. 2009. February. Vol. 30. № 1. Pp. 96–116 // doi.org/10.1210/er.2008–0033; Johnson R. J. et al. Potential Role of Sugar (Fructose) in the Epidemic of Hypertension, Obesity and the Metabolic Syndrome, Diabetes, Kidney Disease, and Cardiovascular Disease // American Journal of Clinical Nutrition. 2007. October. Vol. 86. № 4. Pp. 899–906; Lanaspa M. A. et al. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress: Potential Role in Fructose-Dependent and Independent Fatty Liver // Journal of Biological Chemistry. 2012. November. Vol. 287. № 48. Pp. 40732–40744 // doi.org/10.1074/jbc.M112.399899; Rho Y. H., Zhu Y., Choi H. K. The Epidemiology of Uric Acid and Fructose // Seminars in Nephrology. 2011. September. Vol. 31. № 5. Pp. 410–419 // doi.org/10.1016/j.semnephrol.2011.08.004; Johnson R. J. et al. Sugar, Uric Acid, and the Etiology of Diabetes and Obesity // Diabetes. 2013. October. Vol. 62. № 10. Pp. 3307–3315 // doi.org/10.2337/db12-1814.
141
Bidwell A. J. Chronic Fructose Ingestion as a Major Health Concern: Is a Sedentary Lifestyle Making It Worse? A Review // Nutrients. 2017. May. Vol. 9. № 6. P. 549 // doi.org/10.3390/nu9060549.
142
Stanhope K. L. et al. Consuming Fructose-Sweetened, Not Glucose-Sweetened, Beverages Increases Visceral Adiposity and Lipids and Decreases Insulin Sensitivity in Overweight/Obese Humans // Journal of Clinical Investigation. 2009. May. Vol. 119. № 5. Pp. 1322–1334 // doi.org/10.1172/JCI37385. См. также Stanhope K. L., Havel P. J. Endocrine and Metabolic Effects of Consuming Beverages Sweetened with Fructose, Glucose, Sucrose, or High-Fructose Corn Syrup // American Journal of Clinical Nutrition. 2008. December. Vol. 88. № 6. Pp. 1733S–1737S // doi.org/10.3945/ajcn.2008.25825D; Cox Ch. L. et al. Circulating Concentrations of Monocyte Chemoattractant Protein-1, Plasminogen Activator Inhibitor-1, and Soluble Leukocyte Adhesion Molecule-1 in Overweight/Obese Men and Women Consuming Fructose- or Glucose-Sweetened Beverages for 10 weeks // Journal of Clinical Endocrinology and Metabolism. 2011. December. Vol. 96. № 12. Pp. E2034–E2038 // doi.org/10.1210/jc.2011–1050.
143
Swarbrick M. M. et al. Consumption of Fructose-Sweetened Beverages for 10 weeks Increases Postprandial Triacylglycerol and Apolipoprotein-B Concentrations in Overweight and Obese Women // British Journal of Nutrition. 2008. November. Vol. 100. № 5. Pp. 947–952 // doi.org/10.1017/S0007114508968252.
144
Wang D. D. et al. Effect of Fructose on Postprandial Triglycerides: A Systematic Review and Meta-analysis of Controlled Feeding Trials // Atherosclerosis. 2014. January. Vol. 232. № 1. Pp. 125–133 // doi.org/10.1016/j.atherosclerosis.2013.10.019.
145
Stephan B. C. M. et al. Increased Fructose Intake as a Risk Factor for Dementia // Journals of Gerontology. 2010. August. Series A 65A. № 8. Pp. 809–814 // doi.org/10.1093/gerona/glq079. См. также Siervo M. et al. Reemphasizing the Role of Fructose Intake as a Risk Factor for Dementia // Journals of Gerontology. 2011. May. Series A 66A. № 5. Pp. 534–536 // doi.org/10.1093/gerona/glq222.
146
University of Chicago Medical Center. Sleep Loss Boosts Appetite, May Encourage Weight Gain // ScienceDaily, December 7, 2004 // sciencedaily.com/releases/2004/12/041206210355.htm.
147
Shapiro A. et al. Fructose-Induced Leptin Resistance Exacerbates Weight Gain in Response to Subsequent High-Fat Feeding // American Journal of Physiology — Regulatory, Integrative and Comparative Physiology. 2008. November. Vol. 295. № 5. Pp. R1370–R1375 // doi.org/10.1152/ajpregu.00195.2008.
148
Teff K. L. Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of Ghrelin, and Increases Triglycerides in Women // Journal of Clinical Endocrinology and Metabolism. 2004. June. Vol. 89. № 6. Pp. 2963–2972 // doi.org/10.1210/jc.2003-031855.
149
Lanaspa M. A. et al. High Salt Intake Causes Leptin Resistance and Obesity in Mice by Stimulating Endogenous Fructose Production and Metabolism // Proceedings of the National Academy of Sciences (USA). 2018. March. Vol. 115. № 12. Pp. 3138–3143 // doi.org/10.1073/pnas.1713837115.
150
Nakagawa T. et al. A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome // American Journal of Physiology — Renal Physiology. 2006. March. Vol. 290. № 3. Pp. F625–F631 // doi.org/10.1152/ajprenal.00140.2005.
151
В следующих работах приведен научный обзор: Feig D. I., Soletsky B., Johnson R. J. Effect of Allopurinol on Blood Pressure of Adolescents with Newly Diagnosed Essential Hypertension: A Randomized Trial // JAMA. 2008. August. Vol. 300. № 8. Pp. 924–932 // doi.org/10.1001/jama.300.8.924; Soletsky B., Feig D. I. Uric Acid Reduction Rectifies Prehypertension in Obese Adolescents // Hypertension. 2012. November. Vol. 60. № 5. Pp. 1148–1156 // doi.org/10.1161/HYPERTENSIONAHA.112.196980; Feig D. I., Kang D.-H., Johnson R. J. Uric Acid and Cardiovascular Risk // New England Journal of Medicine. 2008. October. Vol. 359. № 17. Pp. 1811–1821 // doi.org/10.1056/NEJMra0800885; Caliceti C. et al. Fructose Intake, Serum Uric Acid, and Cardiometabolic Disorders: A Critical Review // Nutrients. 2017. April. Vol. 9. № 4. P. 395 // doi.org/10.3390/nu9040395; Kretowicz M. et al. The Impact of Fructose on Renal Function and Blood Pressure // International Journal of Nephrology. 2011. Article ID 315879 // doi.org/10.4061/2011/315879; Khitan Z., Kim D. H. Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension // Journal of Nutrition and Metabolism. 2013. Article ID 682673 // doi.org/10.1155/2013/682673.
152
Meyers A. M., Mourra D., Beeler J. A. High Fructose Corn Syrup Induces Metabolic Dysregulation and Altered Dopamine Signaling in the Absence of Obesity // PLOS ONE. 2017. December. Vol. 12. № 12. P. e0190206 // doi.org/10.1371/journal.pone.0190206.
153
Data and Statistics About ADHD. CDC website // cdc.gov/ncbddd/adhd/data.html.
154
National Institutes of Health. Prescribed Stimulant Use for ADHD Continues to Rise Steadily. September 28, 2011 // nih.gov/news-events/news-releases/prescribed-stimulant-use-adhd-continues-rise-steadily.
155
Johnson R. J. et al. Attention-Deficit/Hyperactivity Disorder: Is It Time to Reappraise the Role of Sugar Consumption? // Postgraduate Medical Journal. 2011. September. Vol. 123. № 5. Pp. 39–49 // doi.org/10.3810/pgm.2011.09.2458.
156
Barrera C. M., Hunter R. E., Dunlap W. P. Hyperuricemia and Locomotor Activity in Developing Rats // Pharmacology Biochemistry and Behavior. 1989. June. Vol. 33. № 2. Pp. 367–369 // doi.org/10.1016/0091-3057(89)90515-7.
157
Sutin A. R. et al. Impulsivity Is Associated with Uric Acid: Evidence from Humans and Mice // Biological Psychiatry. 2014. January. Vol. 75. № 1. Pp. 31–37 // doi.org/10.1016/j.biopsych.2013.02.024.
158
Manowitz P. et al. Uric Acid Level Increases in Humans Engaged in Gambling: A Preliminary Report // Biological Psychology. 1993. September. Vol. 36. № 3. Pp. 223–229 // doi.org/10.1016/0301-0511(93)90019-5.
159
Alruwaily A. et al. Child Social Media Influencers and Unhealthy Food Product Placement // Pediatrics. 2020. November. Vol. 146. № 5. P. e20194057 // doi.org/10.1542/peds.2019–4057.
160
Pollock N. K. et al. Greater Fructose Consumption Is Associated with Cardiometabolic Risk Markers and Visceral Adiposity in Adolescents // Journal of Nutrition. 2012. February. Vol. 142. № 2. Pp. 251–257 // doi.org/10.3945/jn.111.150219. См. также Aparecida de Miranda J. et al. The Role of Uric Acid in the Insulin Resistance in Children and Adolescents with Obesity // Revista Paulista de Pediatria. 2015. December. Vol. 33. № 4. Pp. 431–436 // doi.org/10.1016/j.rpped.2015.03.009; Goran M. I. et al. The Obesogenic Effect of High Fructose Exposure During Early Development // Nature Reviews Endocrinology. 2013. August. Vol. 9. № 8. Pp. 494–500 // doi.org/10.1038/nrendo.2013.108.
161
Перлмуттер Д. Еда и мозг. М.: Манн, Иванов и Фербер, 2019. Прим. ред.
162
Perlmutter D., Means C. Op-Ed: The Bitter Truth of USDA’s Sugar Guidelines // MedPage Today, February 21, 2021 // medpagetoday.com/primarycare/dietnutrition/91281.
163
Обновленные факты и данные о болезни Альцгеймера — см. сайт Ассоциации болезни Альцгеймера Alz.org. Также см. страницу Национального института старения, посвященную фактам: nia.nih.gov/health/alzheimers-disease-fact-sheet.
164
Stein D. J., Singh I., eds. Global Mental Health and Neuroethics, Global Mental Health in Practice 1. Cambridge, MA: Academic Press, 2020. P. 229.
165
Whitmer R. A. et al. Obesity in Middle Age and Future Risk of Dementia: A 27 Year Longitudinal Population Based Study // The BMJ. 2005. June. Vol. 330. № 7504. P. 1360 // doi.org/10.1136/bmj.38446.466238.E0.
166
Suzuki K. et al. Elevated Serum Uric Acid Levels Are Related to Cognitive Deterioration in an Elderly Japanese Population // Dementia and Geriatric Cognitive Disorders Extra. 2016. September — December. Vol. 6. № 3. Pp. 580–588 // doi.org/10.1159/000454660.
167
Euser S. M. et al. Serum Uric Acid and Cognitive Function and Dementia // Brain. 2009. February. Vol. 132. № 2. Pp. 377–382 // doi.org/10.1093/brain/awn316. См. также Khan A. A. et al. Serum Uric Acid Level and Association with Cognitive Impairment and Dementia: Systematic Review and Meta-analysis // Age. 2016. February. Vol. 38. № 1. P. 16 // doi.org/10.1007/s11357-016-9871-8; Latourte A. et al. Uric Acid and Incident Dementia Over 12 Years of Follow-Up: A Population-Based Cohort Study // Annals of the Rheumatic Diseases. 2018. March. Vol. 77. № 3. Pp. 328–335 // doi.org/10.1136/annrheumdis-2016-210767; Desideri G. et al. Uric Acid Amplifies Aβ Amyloid Effects Involved in the Cognitive Dysfunction/Dementia: Evidences from an Experimental Model in Vitro // Journal of Cellular Physiology. 2017. May. Vol. 232. № 5. Pp. 1069–1078 // doi.org/10.1002/jcp.25509; Beydoun M. A. et al. Serum Uric Acid and Its Association with Longitudinal Cognitive Change Among Urban Adults // Journal of Alzheimer’s Disease. 2016. April. Vol. 52. № 4. Pp. 1415–1430 // doi.org/10.3233/JAD-160028.
168
Mini-Strokes Linked to Uric Acid Levels // ScienceDaily, October 5, 2007 // sciencedaily.com/releases/2007/10/071001172809.htm. См. также Mini Strokes Linked to Uric Acid Levels. Johns Hopkins Medicine // hopkinsmedicine.org/news/media/releases/mini_strokes_linked_to_uric_acid_levels.
169
Afsar B. et al. Relationship Between Uric Acid and Subtle Cognitive Dysfunction in Chronic Kidney Disease // American Journal of Nephrology. 2011. Vol. 34. № 1. Pp. 49–54 // doi.org/10.1159/000329097.
170
Lakhan Sh. E., Kirchgessner A. The Emerging Role of Dietary Fructose in Obesity and Cognitive Decline // Journal of Nutrition. 2013. August. Vol. 12. Article № 114 // doi.org/10.1186/1475-2891-12-114.
171
Lakhan and Kirchgessner. The Emerging Role of Dietary Fructose.
172
Steen E. et al. Impaired Insulin and Insulin-Like Growth Factor Expression and Signaling Mechanisms in Alzheimer’s Disease — Is This Type 3 Diabetes? // Journal of Alzheimer’s Disease. 2005. Vol. 7. № 1. Pp. 63–80 // doi.org/10.3233/JAD-2005-7107.
173
Spagnuolo M. S., Iossa S., Cigliano L. Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models // Nutrients. 2020. December. Vol. 13. № 1. P. 1 // doi.org/10.3390/nu13010001.
174
Page K. A. et al. Effects of Fructose vs Glucose on Regional Cerebral Blood Flow in Brain Regions Involved with Appetite and Reward Pathways // JAMA. 2013. January. Vol. 309. № 1. Pp. 63–70 // doi.org/10.1001/jama.2012.116975.
175
Cisternas P. et al. Fructose Consumption Reduces Hippocampal Synaptic Plasticity Underlying Cognitive Performance // Biochimica et Biophysica Acta. 2015. November. Vol. 1852. № 11. Pp. 2379–2390 // doi.org/10.1016/j.bbadis.2015.08.016.
176
van der Borght K. et al. Reduced Neurogenesis in the Rat Hippocampus Following High Fructose Consumption // Regulatory Peptides. 2011. February. Vol. 167. № 1. Pp. 26–30 // doi.org/10.1016/j.regpep.2010.11.002.
177
Agrawal R. et al. Dietary Fructose Aggravates the Pathobiology of Traumatic Brain Injury by Influencing Energy Homeostasis and Plasticity // Journal of Cerebral Blood Flow & Metabolism. 2016. May. Vol. 36. № 5. Pp. 941–953 // doi.org/10.1177/0271678X15606719.
178
Pase M. P. et al. Sugary Beverage Intake and Preclinical Alzheimer’s Disease in the Community // Alzheimer’s & Dementia. 2017. September. Vol. 13. № 9. Pp. 955–964 // doi.org/10.1016/j.jalz.2017.01.024.
179
Johnson R. J. et al. Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer’s Disease // Frontiers in Aging Neuroscience. 2012. September. Vol. 12. P. 560865 // doi.org/10.3389/fnagi.2020.560865. См. также Purnell J. Q. et al. Brain Functional Magnetic Resonance Imaging Response to Glucose and Fructose Infusions in Humans // Diabetes, Obesity and Metabolism. 2011. March. Vol. 13. № 3. Pp. 229–234 // doi.org/10.1111/j.1463–1326.2010.01340.x.
180
Phillips M. C. L. et al. Randomized Crossover Trial of a Modified Ketogenic Diet in Alzheimer’s Disease // Alzheimer’s Research & Therapy. 2021. February. Vol. 13. Article № 51 // doi.org/10.1186/s13195-021-00783-x.
181
Singh J. A., Cleveland J. D. Comparative Effectiveness of Allopurinol Versus Febuxostat for Preventing Incident Dementia in Older Adults: A Propensity-Matched Analysis // Arthritis Research & Therapy 20. 2018. August. Article № 167 // doi.org/10.1186/s13075-018-1663-3.
182
Takir M. et al. Lowering Uric Acid with Allopurinol Improves Insulin Resistance and Systemic Inflammation in Asymptomatic Hyperuricemia // Journal of Investigative Medicine. 2015. December. Vol. 63. № 8. Pp. 924–929 // doi.org/10.1097/JIM.0000000000000242.
183
Gagliardi J. P. What Can We Learn from Studies Linking Gout with Dementia? // American Journal of Geriatric Psychiatry. 2021. February. S1064-7481(21)00217-7 // doi.org/10.1016/j.jagp.2021.02.044.
184
Schretlen D. J. et al. Serum Uric Acid and Cognitive Function in Community-Dwelling Older Adults // Neuropsychology. 2007. January. Vol. 21. № 1. Pp. 136–140 // doi.org/10.1037/0894-4105.21.1.136.
185
Osler W. The Principles and Practice of Medicine, Designed for the Use of Practitioners and Students of Medicine, vol. 1. N.p.: Andesite Press, 2015.
186
Scott J. T. Factors Inhibiting the Excretion of Uric Acid // Journal of the Royal Society of Medicine. 1966. April. Vol. 59. № 4. Pp. 310–313 // doi.org/10.1177/003591576605900405.
187
Общий обзор взаимосвязи между сном и здоровьем: National Institute of Neurological Disorders and Stroke. Brain Basics: Understanding Sleep // ninds.nih.gov/Disorders/Patient-Caregiver-Education/Understanding-Sleep. Также изучите работы доктора Майкла Бреуса, известного авторитета в области медицины сна: Thesleepdoctor.com. См. также Уолкер М. Зачем мы спим. Новая наука о сне и сновидениях. Москва: КоЛибри, 2022.
188
Англ. Good night, sleep tight. Прим. пер.
189
Spiegel K., Leproult R., Van Cauter E. Impact of Sleep Debt on Metabolic and Endocrine Function // The Lancet. 1999. October. Vol. 354. № 9188. Pp. 1435–1439 // doi.org/10.1016/S0140-6736(99)01376-8.
190
Много информации о сне и статистических данных о том, сколько мы спим, на сайте Национального фонда сна: Sleepfoundation.org.
191
Möller-Levet C. S. et al. Effects of Insufficient Sleep on Circadian Rhythmicity and Expression Amplitude of the Human Blood Transcriptome // Proceedings of the National Academy of Sciences USA. 2013. March. Vol. 110. № 12. Pp. E1132–E1141 // doi.org/10.1073/pnas.1217154110.
192
Mullington J. M. et al. Sleep Loss and Inflammation // Best Practice & Research Clinical Endocrinology & Metabolism. 2010. October. Vol. 24. № 5. Pp. 775–784 // doi.org/10.1016/j.beem.2010.08.014.
193
Irwin M. R., Olmstead R., Carroll J. E. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-analysis of Cohort Studies and Experimental Sleep Deprivation // Biological Psychiatry. 2016. July. Vol. 80. № 1. Pp. 40–52 // doi.org/10.1016/j.biopsych.2015.05.014.
194
Cappuccio F. P. et al. Sleep Duration and All-Cause Mortality: A Systematic Review and Meta-analysis of Prospective Studies // Sleep. 2010. May. Vol. 33. № 5. Pp. 585–592 // doi.org/10.1093/sleep/33.5.585.
195
Westwood A. J. et al. Prolonged Sleep Duration as a Marker of Early Neurodegeneration Predicting Incident Dementia // Neurology. 2017. March. Vol. 88. № 12. Pp. 1172–1179 // doi.org/10.1212/WNL.0000000000003732.
196
См. сайт Национального фонда сна: Sleepfoundation.org.
197
Koren D., Dumin M., Gozal D. Role of Sleep Quality in the Metabolic Syndrome // Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2016. August. Vol. 9. Pp. 281–310 // doi.org/10.2147/DMSO.S95120.
198
Cappuccio F. P. et al. Meta-analysis of Short Sleep Duration and Obesity in Children and Adults // Sleep. 2008. May. Vol. 31. № 5. Pp. 619–626 // doi.org/10.1093/sleep/31.5.619.
199
Kim Ch.-W. et al. Sleep Duration and Progression to Diabetes in People with Prediabetes Defined by HbA1c Concentration // Diabetic Medicine. 2017. November. Vol. 34. № 11. Pp. 1591–1598 // doi.org/10.1111/dme.13432. См. также Spiegel K. et al. Effects of Poor and Short Sleep on Glucose Metabolism and Obesity Risk // Nature Reviews Endocrinology. 2009. May. Vol. 5. № 5. Pp. 253–261 // doi.org/10.1038/nrendo.2009.23.
200
Papandreou Ch. et al. Sleep Duration Is Inversely Associated with Serum Uric Acid Concentrations and Uric Acid to Creatinine Ratio in an Elderly Mediterranean Population at High Cardiovascular Risk // Nutrients. 2019. April. Vol. 11. № 4. P. 761 // doi.org/10.3390/nu11040761.
201
Chou Y.-T. et al. Association of Sleep Quality and Sleep Duration with Serum Uric Acid Levels in Adults // PLOS ONE. 2020. September. Vol. 15. № 9. P. e0239185 // doi.org/10.1371/journal.pone.0239185.
202
Zheng C. et al. Serum Uric Acid Is Independently Associated with Risk of Obstructive Sleep Apnea-Hypopnea Syndrome in Chinese Patients with Type 2 Diabetes // Disease Markers 2019, article ID 4578327. April 2019 // doi.org/10.1155/2019/4578327.
203
Iliff J. J. et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β // Science Translational Medicine. 2012. August. Vol. 4. № 147. P. 147ra111 // doi.org/10.1126/scitranslmed.3003748.
204
Lanaspa M. A. et al. High Salt Intake Causes Leptin Resistance and Obesity in Mice by Stimulating Endogenous Fructose Production and Metabolism // Proceedings of the National Academy of Sciences (USA). 2018. March. Vol. 115. № 12. Pp. 3138–3143 // doi.org/10.1073/pnas.1713837115.
205
Lanaspa et al. High Salt Intake. См. также Kuwabara M. et al. Relationship Between Serum Uric Acid Levels and Hypertension Among Japanese Individuals Not Treated for Hyperuricemia and Hypertension // Hypertension Research. 2014. August. Vol. 37. № 8. Pp. 785–789 // doi.org/10.1038/hr.2014.75; Wang Y. et al. Effect of Salt Intake on Plasma and Urinary Uric Acid Levels in Chinese Adults: An Interventional Trial // Scientific Reports. 2018. January. Vol. 8. Article № 1434 // doi.org/10.1038/s41598-018-20048-2.
206
Allison S. J. High Salt Intake as a Driver of Obesity // Nature Reviews Nephrology. 2018. May. Vol. 14. № 5. P. 285 // doi.org/10.1038/nrneph.2018.23.
207
Faraco G. et al. Dietary Salt Promotes Cognitive Impairment Through Tau Phosphorylation // Nature. 2019. October. Vol. 574. № 7780. Pp. 686–690 // doi.org/10.1038/s41586-019-1688-z.
208
Ben Salem Ch. Drug-Induced Hyperuricaemia and Gout // Rheumatology. 2017. May. Vol. 56. № 5. Pp. 679–688 // doi.org/10.1093/rheumatology/kew293. См. также McAdams DeMarco M. A. et al. Diuretic Use, Increased Serum Urate Levels, and Risk of Incident Gout in a Population-Based Study of Adults with Hypertension: The Atherosclerosis Risk in Communities Cohort Study // Arthritis & Rheumatology. 2012. January. Vol. 64. № 1. Pp. 121–129 // doi.org/10.1002/art.33315.
209
Long-Term Use of PPIs Has Consequences for Gut Microbiome. Cleveland Clinic // consultqd.clevelandclinic.org/long-term-use-of-ppis-has-consequences-for-gut-microbiome/. См. также Lehault W. B., Hughes D. M. Review of the Long-Term Effects of Proton Pump Inhibitors // Federal Practitioner. 2017. February. Vol. 34. № 2. Pp. 19–23.
210
Neogi T. et al. Alcohol Quantity and Type on Risk of Recurrent Gout Attacks: An Internet-Based Case-Crossover Study // American Journal of Medicine. 2014. April. Vol. 127. № 4. Pp. 311–318 // doi.org/10.1016/j.amjmed.2013.12.019. См. также Choi H. K., Curhan G. Beer, Liquor, and Wine Consumption and Serum Uric Acid Level: The Third National Health and Nutrition Examination Survey // Arthritis Care & Research. 2004. December. Vol. 51. № 6. Pp. 1023–1029 // doi.org/10.1002/art.20821.
211
Li R., Yu K., Li Ch. Dietary Factors and Risk of Gout and Hyperuricemia: A Meta-analysis and Systematic Review // Asia Pacific Journal of Clinical Nutrition. 2018. Vol. 27. № 6. Pp. 1344–1356 // doi.org/10.6133/apjcn.201811_27(6).0022.
212
Johnson R. J. et al. Umami: The Taste That Drives Purine Intake // Journal of Rheumatology. 2013. November. Vol. 40. № 11. Pp. 1794–1796 // doi.org/10.3899/jrheum.130531.
213
Hernández Bautista R. J. et al. Obesity: Pathophysiology, Monosodium Glutamate-Induced Model and Anti-Obesity Medicinal Plants // Biomedicine & Pharmacotherapy. 2019. March. Vol. 111. Pp. 503–516 // doi.org/10.1016/j.biopha.2018.12.108.
214
He K. et al. Consumption of Monosodium Glutamate in Relation to Incidence of Overweight in Chinese Adults: China Health and Nutrition Survey (CHNS) // American Journal of Clinical Nutrition. 2011. June. Vol. 93. № 6. Pp. 1328–1336 // doi.org/10.3945/ajcn.110.008870.
215
Shi Z. et al. Monosodium Glutamate Is Related to a Higher Increase in Blood Pressure Over 5 Years: Findings from the Jiangsu Nutrition Study of Chinese Adults // Journal of Hypertension. 2011. May. Vol. 29. № 5. Pp. 846–853 // doi.org/10.1097/HJH.0b013e328344da8e.
216
Niaz K., Zaplatic E., Spoor J. Extensive Use of Monosodium Glutamate: A Threat to Public Health? // EXCLI Journal. 2018. March. Vol. 17. Pp. 273–278 // doi.org/10.17179/excli2018-1092.
217
Roa I., del Sol M. Types I and III Parotid Collagen Variations and Serum Biochemical Parameters in Obese Rats Exposed to Monosodium Glutamate // International Journal of Morphology. 2020. June. Vol. 38. № 3 // semanticscholar.org/paper/Types-I-and-III-Parotid-Collagen-Variations-and-in-Roa-Sol/26778ea213ad4773e5f7aadff6ea6e627fbd0368.
218
Merola J. F. et al. Psoriasis, Psoriatic Arthritis and Risk of Gout in US Men and Women // Annals of the Rheumatic Diseases. 2015. August. Vol. 74. № 8. Pp. 1495–1500 // doi.org/10.1136/annrheumdis-2014-205212.
219
Англ. psout — от слов psoriasis и gout.
220
Felten R. et al. At the Crossroads of Gout and Psoriatic Arthritis: “Psout” // Clinical Rheumatology. 2020. May. Vol. 39. № 5. Pp. 1405–1413 // doi.org/10.1007/s10067-020-04981-0.
221
Giordano N. et al. Hyperuricemia and Gout in Thyroid Endocrine Disorders // Clinical and Experimental Rheumatology. 2001. November — December. Vol. 19. № 6. Pp. 661–665.
222
Krishnan E., Lingala B., Bhalla V. Low-Level Lead Exposure and the Prevalence of Gout: An Observational Study // Annals of Internal Medicine. 2012. August. Vol. 157. № 4. Pp. 233–241 // doi.org/10.7326/0003-4819-157-4-201208210-00003.
223
Runcie J., Thomson T. J. Total Fasting, Hyperuricaemia and Gout // Postgraduate Medical Journal. 1969. April. Vol. 45. № 522. Pp. 251–253 // doi.org/10.1136/pgmj.45.522.251.
224
Dessein P. H. et al. Beneficial Effects of Weight Loss Associated with Moderate Calorie/Carbohydrate Restriction, and Increased Proportional Intake of Protein and Unsaturated Fat on Serum Urate and Lipoprotein Levels in Gout: A Pilot Study // Annals of the Rheumatic Diseases. 2000. July. Vol. 59. № 7. Pp. 539–543 // doi.org/10.1136/ard.59.7.539.
225
Lee I-M. et al. Effect of Physical Inactivity on Major Non-Communicable Diseases Worldwide: An Analysis of Burden of Disease and Life Expectancy // The Lancet. 2012. July. Vol. 380. № 9838. Pp. 219–229 // doi.org/10.1016/S0140-6736(12)61031-9.
226
World Health Organization. Physical Inactivity a Leading Cause of Disease and Disability, Warns WHO, April 4, 2002 // who.int/news/item/04-04-2002-physical-inactivity-a-leading-cause-of-disease-and-disability-warns-who. См. также информационный бюллетень ВОЗ об ожирении и избыточном весе: who.int/news-room/fact-sheets/detail/obesity-and-overweight.
227
Biswas A. et al. Sedentary Time and Its Association with Risk for Disease Incidence, Mortality, and Hospitalization in Adults: A Systematic Review and Meta-analysis // Annals of Internal Medicine. 2015. January. Vol. 162. № 2. Pp. 123–132 // doi.org/10.7326/M14-1651.
228
Beddhu S. et al. Light-Intensity Physical Activities and Mortality in the United States General Population and CKD Subpopulation // Clinical Journal of the American Society of Nephrology. 2015. July. Vol. 10. № 7. Pp. 1145–1153 // doi.org/10.2215/CJN.08410814.
229
Park D. Y. et al. The Association Between Sedentary Behavior, Physical Activity and Hyperuricemia // Vascular Health and Risk Management. 2019. August. Vol. 15. Pp. 291–299 // doi.org/10.2147/VHRM.S200278.
230
Zhou J. et al. Physical Exercises and Weight Loss in Obese Patients Help to Improve Uric Acid // Oncotarget. 2017. October. Vol. 8. № 55. Pp. 94893–94899 // doi.org/10.18632/oncotarget.22046.
231
MRC London Institute of Medical Sciences. Too Much Sugar Leads to Early Death, but Not Due to Obesity // ScienceDaily, March 19, 2020 // sciencedaily.com/releases/2020/03/200319141024.htm; eurekalert.org/news-releases/621703. См. также van Dam E. et al. Sugar-Induced Obesity and Insulin Resistance Are Uncoupled from Shortened Survival in Drosophila // Cell Metabolism. 2020. April. Vol. 31. № 4. Pp. 710–725 // doi.org/10.1016/j.cmet.2020.02.016.
232
См. документы Кристофа Калеты по адресу scholar.google.de/citations?user=qw172uQAAAAJ&hl=en.
233
Hao Sh., Zhang Ch., Song H. Natural Products Improving Hyperuricemia with Hepatorenal Dual Effects // Evidence-Based Complementary and Alternative Medicine 2016, article ID 7390504 (2016) // doi.org/10.1155/2016/7390504. См. также Jiang L.-L. et al. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of Hyperuricemia // Foods. 2020. July. Vol. 9. № 8. P. 973 // doi.org/10.3390/foods9080973.
234
Shi Y., Williamson G. Quercetin Lowers Plasma Uric Acid in Prehyperuricaemic Males: A Randomised, Double-Blinded, Placebo-Controlled, Cross-Over Trial // British Journal of Nutrition. 2016. March. Vol. 115. № 5. Pp. 800–806 // doi.org/10.1017/S0007114515005310. См. также Zhang C. et al. Mechanistic Insights into the Inhibition of Quercetin on Xanthine Oxidase // International Journal of Biological Macromolecules. 2018. June. Vol. 112. Pp. 405–412 // doi.org/10.1016/j.ijbiomac.2018.01.190.
235
Serban M.-C. et al. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials // Journal of the American Heart Association. 2016. July. Vol. 5. № 7. P. e002713 // doi.org/10.1161/JAHA.115.002713.
236
Не путать с лютеином, это разные вещества. Прим. пер.
237
Hirano M. et al. Luteolin-Rich Chrysanthemum Flower Extract Suppresses Baseline Serum Uric Acid in Japanese Subjects with Mild Hyperuricemia // Integrative Molecular Medicine. 2017. Vol. 4. № 2 // doi.org/10.15761/IMM.1000275.
238
Imran M. et al. Luteolin, a Flavonoid, as an Anticancer Agent: A Review // Biomedicine & Pharmacotherapy. 2019. April. Vol. 112. P. 108612 // doi.org/10.1016/j.biopha.2019.108612.
239
Wolpert S. Fructose and Head Injuries Adversely Affect Hundreds of Brain Genes Linked to Human Diseases // UCLA College // college.ucla.edu/2017/07/11/fructose-and-head-injuries-adversely-affect-hundreds-of-brain-genes-linked-to-human-diseases/.
240
Allaire J. et al. A Randomized, Crossover, Head-to-Head Comparison of Eicosapentaenoic Acid and Docosahexaenoic Acid Supplementation to Reduce Inflammation Markers in Men and Women: The Comparing EPA to DHA (ComparED) Study // American Journal of Clinical Nutrition. 2016. August. Vol. 104. № 2. Pp. 280–287 // doi.org/10.3945/ajcn.116.131896.
241
Juraschek S. P., Miller E. R. III, Gelber A. C. Effect of Oral Vitamin C Supplementation on Serum Uric Acid: A Meta-analysis of Randomized Controlled Trials // Arthritis Care & Research. 2011. September. Vol. 63. № 9. Pp. 1295–1306 // doi.org/10.1002/acr.20519.
242
Choi H. K., Gao X., Curhan G. Vitamin C Intake and the Risk of Gout in Men: A Prospective Study // Archives of Internal Medicine. 2009. March. Vol. 169. № 5. Pp. 502–507 // doi.org/10.1001/archinternmed.2008.606.
243
Juraschek, Miller, and Gelber, Effect of Oral Vitamin C Supplementation on Serum Uric Acid.
244
Последние исследования не подтверждают значимого снижения уровня мочевой кислоты у больных подагрой при использовании витамина С. При этом суточная потребность в этом витамине 90 мг. Более высокие дозы могут вызывать побочные эффекты. Прим. науч. ред.
245
Ebrahimi-Mameghani M. et al. Glucose Homeostasis, Insulin Resistance and Inflammatory Biomarkers in Patients with Non-alcoholic Fatty Liver Disease: Beneficial Effects of Supplementation with Microalgae Chlorella vulgaris: A Double-Blind Placebo-Controlled Randomized Clinical Trial // Clinical Nutrition. 2017. August. Vol. 36. № 4. Pp. 1001–1006 // doi.org/10.1016/j.clnu.2016.07.004.
246
Panahi Y. et al. A Randomized Controlled Trial of 6-week Chlorella vulgaris Supplementation in Patients with Major Depressive Disorder // Complementary Therapies in Medicine. 2015. August. Vol. 23. № 4. Pp. 598–602 // doi.org/10.1016/j.ctim.2015.06.010.
247
Murray Ch. J. L. et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, and Risk Factors Among US States // JAMA. 2018. Vol. 319. № 14. Pp. 1444–1472 // doi.org/10.1001/jama.2018.0158.
248
Insulin Resistance & Prediabetes // National Institute of Diabetes, Digestive and Kidney Diseases // niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/prediabetes-insulin-resistance.
249
Tirosh A. et al. Normal Fasting Plasma Glucose Levels and Type 2 Diabetes in Young Men // New England Journal of Medicine. 2005. October. Vol. 353. № 14. Pp. 1454–1462 // doi.org/10.1056/NEJMoa050080.
250
Tabák A. G. et al. Prediabetes: A High-Risk State for Diabetes Development // The Lancet. 2012. June. Vol. 379. № 9833. Pp. 2279–2290 // doi.org/10.1016/S0140-6736(12)60283-9.
251
Если вы хотите получить больше информации от доктора Кейси Минc и вводный курс по непрерывному мониторингу глюкозы, предлагаю вам послушать интервью с ней в моем подкасте на сайте: drperlmutter.com/continuous-glucose-monitoring-a-powerful-tool-for-metabolic-health/.
252
В России оборудование для непрерывного мониторинга глюкозы можно найти в магазинах медицинских и диабетических товаров. Прим. пер.
253
Hall H. et al. Glucotypes Reveal New Patterns of Glucose Dysregulation // PLOS Biology. 2018. July. Vol. 16. № 7. P. e2005143 // doi.org/10.1371/journal.pbio.2005143.
254
Thomas F. et al. Blood Glucose Levels of Subelite Athletes During 6 Days of Free Living // Journal of Diabetes Science and Technology. 2016. November. Vol. 10. № 6. Pp. 1335–1343 // doi.org/10.1177/1932296816648344.
255
Shah V. N. et al. Continuous Glucose Monitoring Profiles in Healthy Nondiabetic Participants: A Multicenter Prospective Study // Journal of Clinical Endocrinology and Metabolism. 2019. October. Vol. 104. № 10. Pp. 4356–4364 // doi.org/10.1210/jc.2018-02763.
256
Butler A. E. et al. β-Cell Deficit and Increased β-Cell Apoptosis in Humans with Type 2 Diabetes // Diabetes. 2003. January. Vol. 52. № 1. Pp. 102–110 // doi.org/10.2337/diabetes.52.1.102.
257
Li Li et al. Acute Psychological Stress Results in the Rapid Development of Insulin Resistance // Journal of Endocrinology. 2013. April. Vol. 217. № 2. Pp. 175–184 // doi.org/10.1530/JOE-12-0559.
258
Survey: Nutrition Information Abounds, but Many Doubt Food Choices // Food Insight, May 2017 // foodinsight.org/survey-nutrition-information-abounds-but-many-doubt-food-choices/.
259
См. интервью с доктором Кейси Минc в моем подкасте от 1 июня 2021 г.: drperlmutter.com/continuous-glucose-monitoring-a-powerful-tool-for-metabolic-health/.
260
Панда С. Циркадный код: Как настроить свои биологические часы на здоровую жизнь. Минск: Попурри, 2019. Прим. ред.
261
Панда С. Циркадный код. Как настроить свои биологические часы на здоровую жизнь. Минск: Попурри, 2019. Больше о докторе Панде и его исследовательской работе можно узнать на сайте его лаборатории в Salk Institute: salk.edu/scientist/satchidananda-panda/.
262
Panda. The Circadian Code.
263
Manoogian E. N. et al. Time-Restricted Eating for the Prevention and Management of Metabolic Diseases // Endocrine Reviews. 2021. P. bnab027 // doi.org/10.1210/endrev/bnab027.
264
Endocrine Society. Intermittent Fasting Can Help Manage Metabolic Disease: Popular Diet Trend Could Reduce the Risk of Diabetes and Heart Disease // ScienceDaily // sciencedaily.com/releases/2021/09/210922090909.htm (по состоянию на июль 2022 г.).
265
Prasad M. et al. A Smartphone Intervention to Promote Time Restricted Eating Reduces Body Weight and Blood Pressure in Adults with Overweight and Obesity: A Pilot Study // Nutrients. 2021. June. Vol. 13. № 7. P. 2148 // doi.org/10.3390/nu13072148.
266
Bansal N., Weinstock R. S. Non-Diabetic Hypoglycemia // Endotext, May 20, 2020.
267
Cerqueira F., Chausse B., Kowaltowski A. J. Intermittent Fasting Effects on the Central Nervous System: How Hunger Modulates Brain Function // Handbook of Famine, Starvation, and Nutrient Deprivation: From Biology to Policy, ed. Preedy V., Patel V. B. Springer, Cham // doi.org/10.1007/978-3-319-40007-5_29-1.
268
Jamshed H. et al. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans // Nutrients. 2019. May. Vol. 11. № 6. P. 1234 // doi.org/10.3390/nu11061234.
269
Araújo J., Cai J., Stevens J. Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016 // Metabolic Syndrome and Related Disorders. 2019. February. Vol. 17. № 1. Pp. 46–52 // doi.org/10.1089/met.2018.0105.
270
В России можно найти в продаже глюкометры с расширенными функциями, которые позволяют проверить не только глюкозу в крови, но и мочевую кислоту, холестерин и т. д. Прим. пер.
271
Рекомендуемая суточная норма потребления для витамина С — 90 мг. Прим. ред.
272
Bruci A. et al. Very Low-Calorie Ketogenic Diet: A Safe and Effective Tool for Weight Loss in Patients with Obesity and Mild Kidney Failure // Nutrients. 2020. January. Vol. 12. № 2. P. 333 // doi.org/10.3390/nu12020333.
273
Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017 // The Lancet. 2019. April. Vol. 393. № 10184. Pp. 1958–1972 // doi.org/10.1016/S0140-6736(19)30041-8. См. также Forouhi N. G., Unwin N. Global Diet and Health: Old Questions, Fresh Evidence, and New Horizons // The Lancet. 2019. April. Vol. 393. № 10184. Pp. 1916–1918 // doi.org/10.1016/S0140-6736(19)30500-8.
274
Все, что вы хотите знать о нейротропном факторе и здоровье мозга, включая ссылки на исследования, вы найдете в дополненном издании моей книги «Еда и мозг».
275
Beydoun M. A. et al. Dietary Factors Are Associated with Serum Uric Acid Trajectory Differentially by Race Among Urban Adults // British Journal of Nutrition. 2018. October. Vol. 120. № 8. Pp. 935–945 // doi.org/10.1017/S0007114518002118. См. также Vedder D. et al. Dietary Interventions for Gout and Effect on Cardiovascular Risk Factors: A Systematic Review // Nutrients. 2019. December. Vol. 11. № 12. P. 2955 // doi.org/10.3390/nu11122955; Gromova M. A., Tsurko V. V., Melekhina A. S. Rational Approach to Nutrition for Patients with Gout // Clinician. 2019. Vol. 13. Nos. 3–4. Pp. 15–21 // doi.org/10.17650/1818-8338-2019-13-3-4-15-21; Kaneko K. et al. Total Purine and Purine Base Content of Common Foodstuffs for Facilitating Nutritional Therapy for Gout and Hyperuricemia // Biological and Pharmaceutical Bulletin. 2014. Vol. 37. № 5. Pp. 709–721 // doi.org/10.1248/bpb.b13-00967.
276
Suez J. et al. Artificial Sweeteners Induce Glucose Intolerance by Altering the Gut Microbiota // Nature. 2014. October. Vol. 514. № 7521. Pp. 181–186 // doi.org/10.1038/nature13793.
277
Pase M. P. et al. Sugar- and Artificially Sweetened Beverages and the Risks of Incident Stroke and Dementia // Stroke. 2017. April. Vol. 48. № 5. Pp. 1139–1146 // doi.org/10.1161/STROKEAHA.116.016027; Pase M. P. et al. Sugary Beverage Intake and Preclinical Alzheimer’s Disease in the Community // Alzheimer’s & Dementia. 2017. September. Vol. 13. № 9. Pp. 955–964 // doi.org/10.1016/j.jalz.2017.01.024.
278
Franchi F. et al. Effects of D-allulose on Glucose Tolerance and Insulin Response to a Standard Oral Sucrose Load: Results of a Prospective, Randomized, Crossover Study // BMJ Open Diabetes Research and Care. 2021. February. Vol. 9. № 1. P. e001939 // doi.org/10.1136/bmjdrc-2020-001939.
279
В России можно найти в продаже несколько брендов аллюлозы. Прим. пер.
280
Вот для начала небольшая подборка исследований меда: Al-Waili N. et al. Honey and Cardiovascular Risk Factors, in Normal Individuals and in Patients with Diabetes Mellitus or Dyslipidemia // Journal of Medicinal Food. 2013. December. Vol. 16. № 12. Pp. 1063–1078 // doi.org/10.1089/jmf.2012.0285; Zuliani Ramli N. et al. A Review on the Protective Effects of Honey Against Metabolic Syndrome // Nutrients. 2018. August. Vol. 10. № 8. P. 1009 // doi.org/10.3390/nu10081009; Erejuwa O. O., Sulaiman S. A., Ab Wahab M. S. Honey — A Novel Antidiabetic Agent // International Journal of Biological Sciences. 2012. Vol. 8. № 6. Pp. 913–934 // doi.org/10.7150/ijbs.3697.
281
Mohan A. et al. Effect of Honey in Improving the Gut Microbial Balance // Food Quality and Safety. 2017. May. Vol. 1. № 2. Pp. 107–115 // doi.org/10.1093/fqsafe/fyx015.
282
Nassar S. E. et al. Effect of Inulin on Metabolic Changes Produced by Fructose Rich Diet // Life Science Journal. 2013. January. Vol. 10. № 2. Pp. 1807–1814.
283
World Health Organization. Global Strategy on Diet, Physical Activity and Health // who.int/publications/i/item/9241592222.
284
Yang G. et al. Suppression of NLRP3 Inflammasome by Oral Treatment with Sulforaphane Alleviates Acute Gouty Inflammation // Rheumatology. 2018. April. Vol. 57. № 4. Pp. 727–736 // doi.org/10.1093/rheumatology/kex499. См. также Houghton Ch. A. Sulforaphane: Its “Coming of Age” as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease // Oxidative Medicine and Cellular Longevity. 2019. October. Article ID 2716870 // doi.org/10.1155/2019/2716870.
285
Dinkova-Kostova A. T. et al. KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane // Trends in Food Science and Technology. 2017. November. Vol. 69. Part B. Pp. 257–269 // doi.org/10.1016/j.tifs.2017.02.002.
286
Jacob R. A. et al. Consumption of Cherries Lowers Plasma Urate in Healthy Women // Journal of Nutrition. 2003. June. Vol. 133. № 6. Pp. 1826–1829 // doi.org/10.1093/jn/133.6.1826. См. также Martin K. R., Coles K. M. Consumption of 100% Tart Cherry Juice Reduces Serum Urate in Overweight and Obese Adults // Current Developments in Nutrition. 2019. February. Vol. 3. № 5. P. nzz011 // doi.org/10.1093/cdn/nzz011; Schlesinger N., Rabinowitz R., Schlesinger M. Pilot Studies of Cherry Juice Concentrate for Gout Flare Prophylaxis // Journal of Arthritis. 2012. Vol. 1. № 1. P. 101 // iomcworld.org/open-access/pilot-studies-of-cherry-juice-concentrate-for-gout-flare-prophylaxis-jahs.1000101.pdf.
287
Xie J. et al. Delphinidin-3-O-Sambubioside: A Novel Xanthine Oxidase Inhibitor Identified from Natural Anthocyanins // Food Quality and Safety. 2021. April. Vol. 5. P. fyaa038 // doi.org/10.1093/fqsafe/fyaa038.
288
Gunter M. J. et al. Coffee Drinking and Mortality in 10 European Countries: A Multinational Cohort Study // Annals of Internal Medicine. 2017. August. Vol. 167. № 4. Pp. 236–247 // doi.org/10.7326/M16-2945. См. также Choi H. K., Curhan G. Coffee, Tea, and Caffeine Consumption and Serum Uric Acid Level: The Third National Health and Nutrition Examination Survey // Arthritis & Rheumatology. 2007. June. Vol. 57. № 5. Pp. 816–821 // doi.org/10.1002/art.22762.
289
Park S.-Y. et al. Prospective Study of Coffee Consumption and Cancer Incidence in Non-white Populations // Cancer Epidemiology, Biomarkers & Prevention. 2018. August. Vol. 27. № 8. Pp. 928–935 // doi.org/10.1158/1055-9965.EPI-18-0093.
290
Choi and Curhan, Coffee, Tea, and Caffeine Consumption.
291
Mi Y. et al. EGCG Ameliorates High-Fat- and High-Fructose-Induced Cognitive Defects by Regulating the IRS/AKT and ERK/CREB/BDNF Signaling Pathways in the CNS // FASEB Journal. 2017. November. Vol. 31. № 11. Pp. 4998–5011 // doi.org/10.1096/fj.201700400RR.
292
Choi H. K. et al. Alcohol Intake and Risk of Incident Gout in Men: A Prospective Study // The Lancet. 2004. April. Vol. 363. № 9417. Pp. 1277–1281 // doi.org/10.1016/S0140-6736(04)16000-5.
293
Перлмуттер Д. Промывка мозга. М.: Манн, Иванов и Фербер, 2020.
294
Shukla A. P. et al. Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels // Diabetes Care. 2015. July. Vol. 38. № 7. Pp. e98–e99 // doi.org/10.2337/dc15-0429.
295
Josse A. R. et al. Almonds and Postprandial Glycemia — A Dose-Response Study // Metabolism. 2007. March. Vol. 56. № 3. Pp. 400–404 // doi.org/10.1016/j.metabol.2006.10.024.
296
Perlmutter A. The Coronavirus Took Advantage of Our Weaknesses // Elemental, October 21, 2020 // elemental.medium.com/the-coronavirus-took-advantage-of-our-weaknesses-e7966ea48b75.
297
Danaei G. et al. The Preventable Causes of Death in the United States: Comparative Risk Assessment of Dietary, Lifestyle, and Metabolic Risk Factors // PLOS Medicine. 2009. April. Vol. 6. № 4. P. e1000058 // doi.org/10.1371/journal.pmed.1000058.
298
Здесь и далее чашка — 200 мл. Прим. ред.
299
Колд брю — метод заваривания кофе грубого помола холодной чистой водой; напиток настаивается в течение 8–24 часов. Прим. ред.
300
Proctor R. N. Golden Holocaust: Origins of the Cigarette Catastrophe and the Case for Abolition. Berkeley: University of California Press, 2012.
301
Gourd K. Fritz Lickint // Lancet Respiratory Medicine. 2014. May. Vol. 2. № 5. Pp. 358–359 // doi.org/10.1016/S2213-2600(14)70064-5.
302
Grabow C. Candy-Coated Cartel: Time to Kill the U.S. Sugar Program // CATO Institute policy analysis. 2018. April 10. № 837 // cato.org/policy-analysis/candy-coated-cartel-time-kill-us-sugar-program.
303
Lee Y. et al. Cost-Effectiveness of Financial Incentives for Improving Diet and Health through Medicare and Medicaid: A Microsimulation Study // PLOS Medicine. 2019. March. Vol. 16. № 3. P. e1002761 // doi.org/10.1371/journal.pmed.1002761.
304
Downer S. et al. Food Is Medicine: Actions to Integrate Food and Nutrition into Healthcare // BMJ. 2020. June. Vol. 369. P. m2482 // doi.org/10.1136/bmj.m2482.
305
Riley K. et al. Reducing Hospitalizations and Costs: A Home Health Nutrition-Focused Quality Improvement Program // Journal of Parenteral and Enteral Nutrition. 2020. January. Vol. 44. № 1. Pp. 58–68 // doi.org/10.1002/jpen.1606.