{99}. Смещаясь с этой скоростью, точка равноденствия совершает полный круг в 360° по зодиаку за промежуток времени, равный произведению 360 и 75, то есть за 27 000 лет.
Сейчас мы знаем, что прецессия точек равноденствия вызывается смещением земной оси (похожей на медленные «блуждающие» оси быстро крутящегося волчка) вокруг перпендикуляра к плоскости орбиты Земли, в то время как угол между этим направлением и осью Земли остается постоянным и приблизительно равен 23,5°. Равноденствия – это дни, когда отрезок прямой между Землей и Солнцем перпендикулярен земной оси, поэтому изменение направления земной оси заставляет точки равноденствия прецессировать. В главе 14 мы узнаем, что причина этого вращения была впервые объяснена Исааком Ньютоном как результат действия сил тяготения со стороны Солнца и Луны на экваториальное вздутие Земли. В действительности поворот земной оси на полные 360° занимает 25 727 лет. Замечательно, насколько точно сумел Гиппарх предсказать длительность процесса, происходящего в течение такого большого промежутка времени. Между прочим, именно из-за прецессии точек равноденствия древним мореходам приходилось определять направление на север приближенно по созвездиям вблизи северного полюса мира, а не по привычной нам Полярной звезде. Полярная осталась на том же месте среди звезд, но в древности ось Земли была направлена вовсе не на нее, и в будущем северный полюс мира снова перестанет совпадать с Полярной звездой.
Возвращаясь к задачам измерения расстояний до небесных тел, надо отметить, что и Аристарх, и Гиппарх давали оценки расстояния до Луны и Солнца, выраженные в относительных единицах, привязанных к размеру Земли. Сам этот размер был измерен спустя несколько десятков лет после работ Гиппарха другим ученым, Эратосфеном. Он родился в 273 г. до н. э. в Кирене, греческом городе на Средиземноморском побережье нынешней Ливии, который был основан около 630 г. до н. э. и ко времени рождения Эратосфена стал частью царства Птолемеев. Он учился в Афинах, в том числе у мудрецов Ликея, а около 245 г. до н. э. царь Птолемей III пригласил его в Александрию, чтобы сотрудничать с Музеем и служить наставником будущему Птолемею IV. В 234 г. до н. э. Эрастофен стал пятым главой Александрийской библиотеки. Его основные труды «Об измерениях Земли», «Географические мемуары», «Гермес», к сожалению, были полностью утрачены, но многие цитаты из них сохранились в работах последователей.
То, как Эратосфен измерял Землю, описал философ-стоик Клеомед в своем труде «О небе»{100}, написанном после 50 г. до н. э. Эратосфен взял за основу наблюдение того, что в полдень во время летнего солнцестояния в Сиене, египетском городе, который Эратосфен считал расположенным точно к югу от Александрии, солнце находится на небе прямо над головой, а измерения, которые сам Эратосфен производил с гномоном в Александрии, показали, что во время солнцестояния в полдень направление на Солнце отклонено на 1/50 полного круга, или 7,2° от вертикали. Отсюда он заключил, что длина окружности земного шара в 50 раз больше, чем расстояние между Александрией и Сиеной (см. техническое замечание 12). Расстояние от Александрии до Сиены измерялось (вероятно, пешими измерителями, которые тренировались совершать шаги одинаковой длины) и равнялось 5000 стадиям, поэтому длина окружности всей Земли должна была составлять 250 000 стадий.
Насколько точно это значение? Мы не можем определенно сказать, какова была длина стадии, которую использовал Эратосфен, и Клеомед, по всей видимости, тоже этого не знал, потому что у древних греков не было общего стандарта длины наподобие наших километров или миль. Но, даже не зная длину стадии, мы можем оценить, насколько точно Эратосфен применял астрономический метод. По нынешним данным, длина окружности Земли в 47,9 раз больше расстояния между Александрией и Сиеной (нынешним Асуаном), поэтому вывод Эратосфена о том, что длина окружности земного шара в 50 раз больше этой дистанции, вполне точный, независимо от конкретной длины одной стадии{101}. И если не в географии, то в астрономии Эратосфен наверняка добился успеха.
8. Загадка планет
Не только Солнце и Луна в течение года двигаются по зодиаку с запада на восток, совмещая это передвижение с ежедневным вращением с востока на запад вокруг северного полюса мира вместе с остальным звездным небом. Еще представители древних цивилизаций заметили, что, если наблюдать в течение многих дней, можно заметить, как пять «звезд» двигаются по небосклону с запада на восток и почти так же, как Солнце и Луна, проходят по одному и тому же пути на фоне неподвижных звезд. Греки назвали их странствующими звездами, или планетами, и дали имена богов: Гермес, Афродита, Арес, Зевс и Кронос. Римляне перевели эти имена как Меркурий, Венера, Марс, Юпитер и Сатурн. Вслед за вавилонянами они также включили в состав планет Луну и Солнце{102}, так что всего их было семь, как и дней в неделе{103}.
Планеты движутся по небу с разной скоростью: Меркурий и Венера проходят свой путь по зодиаку за год, Марс – за год и 322 дня, Юпитер – за 11 лет и 315 дней, Сатурн – за 29 лет и 166 дней. Все эти цифры являются средними значениями, поскольку планеты не движутся через зодиак с постоянной скоростью. Иногда они меняют направление движения на некоторое время, а потом возвращаются на свой привычный путь с запада на восток. Основная часть истории возникновения современной науки связана с длившимися более 2000 лет попытками понять особенности движения планет.
Одна из самых ранних теорий движения планет, Солнца и Луны принадлежала пифагорейцам. Они представляли себе, что пять планет, Солнце и Луна вместе с Землей обращаются вокруг огня, расположенного в центре. Чтобы объяснить, почему мы на Земле не видим этого огня, пифагорейцы предположили, что мы живем на той стороне Земли, которая обращена в противоположную от него сторону. Как и практически все досократики, пифагорейцы считали, что Земля плоская и имеет форму диска; они полагали, что этот диск всегда повернут одной стороной к расположенному в центре мироздания огню, а люди находятся на другой стороне. Дневное обращение Земли вокруг центрального огня предположительно объясняло видимое ежедневное движение более медленно вращающегося вокруг Земли Солнца, движение Луны, планет и неподвижных звезд{104}. Согласно Аристотелю и Аэцию, пифагореец Филолай в V в. до н. э. придумал противоземие – планету, обращающуюся там, где мы не можем наблюдать ее с нашей стороны Земли, то есть либо между Землей и центральным огнем, либо с другой стороны центрального огня. Аристотель объяснял появление этого противоземия увлечением пифагорейцев числами. Солнце, Луна, пять планет, неподвижная сфера со звездами и Земля составляли девять объектов, обращающихся вокруг центрального огня, а пифагорейцам хотелось, чтобы их было десять, поскольку десять является идеальным числом, если представить его следующим образом: 10=1+2+3+4. Как с некоторым презрением описывает Аристотель, пифагорейцы
«… элементы чисел предположили элементами всех вещей и всю вселенную <признали> гармонией и числом. И все, что они могли в числах и гармонических сочетаниях показать согласующегося с состояниями и частями мира и со всем мировым устройством, это они сводили вместе и приспособляли <одно к другому>; и если у них где-нибудь того или иного не хватало, они стремились <добавить это так>, чтобы все построение находилось у них в сплошной связи. Так, например, ввиду того, что десятка (декада), как им представляется, есть нечто совершенное и вместила в себе всю природу чисел, то и несущихся по небу тел они считают десять, поэтому на десятом месте они помещают противоземлю»{105}.
По всей видимости, пифагорейцы никогда не пытались показать, как их теория детально описывает видимое движение по небу Солнца, Луны и планет, проходящих на фоне неподвижных звезд. Объяснение этого видимого движения стало делом будущих веков и было завершено только во времена Кеплера.
Решению этой задачи способствовало появление таких приборов, как гномон, необходимый для изучения движения Солнца, и других инструментов, которые позволили измерить углы между направлениями на различные звезды и планеты или углы между этими астрономическими объектами и линией горизонта. Конечно, все астрономические наблюдения в те времена проводились невооруженным глазом. По иронии судьбы Клавдий Птолемей, который подробно изучил преломление (рефракцию) и отражение света (в том числе эффекты рефракции в атмосфере при определении видимого положения звезд) и который, как мы увидим далее, сыграл основополагающую роль в истории астрономии, так и не понял, что линзы и изогнутые зеркала могут быть использованы для того, чтобы увеличивать изображения небесных тел, как это было сделано в телескопе-рефракторе Галилео Галилея и зеркальном телескопе, изобретенном Исааком Ньютоном.
Но не только измерительные инструменты помогли достичь огромных успехов научной астрономии в Греции. Эти достижения стали возможны благодаря открытиям в области математики. В то время как решались новые задачи, основной спор и в античной, и в средневековой астрономии велся не о том, что движется – Земля или Солнце, а по поводу двух разных объяснений, каким образом Солнце, Луна и планеты обращаются вокруг неподвижной Земли. Как мы увидим далее, большинство этих споров было связано с различиями в понимании роли математики в естественных науках.
Все началось с того, что я люблю называть решением «домашнего задания» Платона. Согласно последователю неоплатонизма Симпликию, писавшему в 530 г. в своих комментариях к трактату Аристотеля «О небе»,