Объясняя мир. Истоки современной науки — страница 64 из 73

Луч зрения от наблюдателя, направленный в сторону объекта, проходит по касательной к поверхности Земли в тот момент, когда он восходит над горизонтом, поэтому угол между этим лучом и направлением от обсерватории в центр Земли – прямой. Отрезки, соединяющие наблюдателя, центр Земли и объект, таким образом, образуют прямоугольный треугольник (см. рис. 14). Синус угла θ в этом треугольнике равен отношению противолежащего катета, радиуса Земли rз, к гипотенузе, расстоянию d от центра Земли до объекта, которое мы измеряем. Как видно из чертежа, этот же угол равен видимому смещению объекта на фоне удаленных звезд между моментом его появления над горизонтом и кульминацией. Полное смещение за время от восхода объекта до его захода составит 2θ.


Рис. 14. Использование суточного параллакса для определения расстояния d от Земли до астрономического объекта. Здесь показан вид в плане со стороны южного полюса Земли. Для простоты примера наблюдатель расположен на экваторе, а наблюдаемый объект находится в той же самой плоскости, что и экватор. Две прямые, пересекающиеся под углом θ, – это направления от наблюдателя к объекту в моменты его восхода над горизонтом и шесть часов спустя, во время его кульминации прямо в зените для наблюдателя.


Например, если мы предположим, что наблюдаемый объект находится от нас так же далеко, как Луна, то d ≈ 400 000 км, rз ≈ 6400 км, поэтому sin θ ≈ 6,4/400, и, таким образом, θ ≈ 0,9°, а полный суточный параллакс составляет 1,8°. При наблюдении объекта из иной произвольной точки на Земле, такой как остров Вен (например, сверхновой 1572 г.), ожидаемый суточный параллакс должен быть меньше, но все равно того же порядка величины – около 1°. Этого более чем достаточно, чтобы такой опытный астроном, как Браге, измерил бы его и без увеличительных инструментов. Однако Тихо Браге не удалось, наблюдая сверхновую, заметить наличие у нее какого-либо суточного параллакса, из чего он заключил, что звезда находится гораздо дальше Луны. Кроме того, надо отметить, что и параллакс самой Луны был измерен без труда, что стало способом измерения расстояния между Землей и Луной.

21. Правило равных площадей и эквант

Согласно Первому закону Кеплера, все планеты, включая Землю, обращаются вокруг Солнца по эллиптическим орбитам, причем Солнце находится не в их центрах, а в некоторых смещенных от центра точках, расположенных на больших осях этих эллипсов – в одном из фокусов эллипса каждой из орбит (см. техническое замечание 18). Эксцентриситет эллипса e определяется так, что расстояние от любого его фокуса до центра равно ea, где a – длина большой полуоси эллипса. Также, согласно Второму закону Кеплера, скорость каждой планеты при ее перемещении по орбите не постоянна, а изменяется таким образом, что отрезок (или радиус-вектор), проведенный к ней от Солнца, заметает равные по площади участки плоскости за одинаковые отрезки времени.

Существует другой способ приближенно сформулировать тот же Второй закон, имеющий близкое отношение к старой идее экванта, которую использовал в своей астрономической системе Птолемей. Вместо того чтобы рассматривать отрезок, проведенный к планете от Солнца, рассмотрим отрезок к ней же из другой точки, а именно из пустого фокуса ее эллиптической орбиты. Эксцентриситет e некоторых орбит планет довольно значителен, и им нельзя пренебрегать. Но его квадрат e² очень мал для любой планеты. Например, среди планет самый большой эксцентриситет у орбиты Меркурия, для него e = 0,206, а e² = 0,042; для Земли же e² = 0,00028. Поэтому при вычислении планетных движений достаточно аппроксимировать реальные их законы уравнениями, в которых присутствуют слагаемые, пропорциональные эксцентриситету e, или независимые от него слагаемые, и игнорировать такие их члены, которые пропорциональны квадрату эксцентриситета e² или его степеням высших порядков. В этом приближении Второй закон Кеплера эквивалентен утверждению, что отрезок, проводимый из пустого фокуса планетной орбиты к планете, заметает равные углы за равные промежутки времени. Иначе говоря, эта линия вращается с постоянной угловой скоростью.

На конкретном примере покажем, что если  – это скорость, с которой радиус-вектор от Солнца к планете заметает равные площади, а (фи с точкой) – скорость изменения угла между радиус-вектором от пустого фокуса к той же планете и большой осью ее орбиты, то верно равенство



где O (e²) – обозначение всех членов, пропорциональных e² или степеням e еще более высоких порядков, а R – коэффициент, значение которого зависит от применяемых единиц измерения углов. Если мы меряем углы в градусах, то R = 360°/2π = 57,293…°, то есть угол размером в один радиан. Или мы можем измерять углы в радианах, и тогда R = 1. Второй закон Кеплера гласит, что за одинаковые промежутки времени площадь, заметаемая радиус-вектором планеты, одна и та же. Это значит, что  – величина постоянная, а, следовательно, что постоянна и с точностью до слагаемых высшего порядка, пропорциональных e². Поэтому с достаточной точностью можно сказать, что за заданный промежуток времени угол, на который изменяется радиус-вектор планеты из пустого фокуса ее орбиты, всегда один и тот же.

Что касается описанной Птолемеем теории, центр эпицикла каждой планеты обращается вокруг Земли по круговой орбите, деференту, но Земля находится не в центре деферента. Орбита является эксцентричной, то есть Земля находится в точке, отделенной от центра деферента небольшим расстоянием. Мало того, скорость, с которой центр эпицикла обращается вокруг Земли, не постоянна, и угловая скорость, с которой луч от Земли к этому центру поворачивается, тоже не постоянна. Чтобы детально учесть все особенности наблюдаемого движения планет, Птолемей изобрел понятие экванта. Это точка по другую сторону от центра деферента по отношению к Земле, которая находится на том же расстоянии от центра, что и Земля. Луч, проводимый к центру эпицикла от этого экванта (а не от Земли), и должен был описывать равные углы в одни и те же промежутки времени.

Внимательный читатель уже заметил, что это очень похоже на картину, описываемую законами Кеплера. Конечно, роли Солнца и Земли в астрономических системах мира Птолемея и Коперника противоположны, но пустой фокус эллипса в теории Кеплера играет ту же самую роль, что и эквант в теории Птолемея, а Второй закон Кеплера объясняет, почему введение экванта помогло улучшить теоретические предсказания видимых положений планет по теории Птолемея.


Теперь докажем равенство (1). Определим θ как угол между большой осью эллипса и отрезком, соединяющим Солнце и планету, и вспомним, что φ определен как угол между той же большой осью и отрезком, соединяющим планету и пустой фокус. Так же, как в техническом замечании 18, обозначим длины этих отрезков r+ и r– то есть расстояния от Солнца до планеты и от планеты до пустого фокуса орбиты соответственно. Как было показано, они равны



где х – горизонтальная координата точки на эллипсе, то есть расстояние между точкой и прямой, секущей эллипс вдоль его малой оси.

Косинус угла определяется в тригонометрии с использованием прямоугольного треугольника, один из углов которого равен данному: косинусом называется отношение длины катета, прилежащего к этому углу, к длине гипотенузы треугольника. Поэтому из рис. 15 мы можем записать:




Рис. 15. Орбитальное движение планеты по эллипсу. Орбита планеты вычерчена здесь как эллипс, имеющий эксцентриситет (как и на рис. 12) около 0,8 – значительно больше, чем у какой-либо планеты Солнечной системы. Отрезки, обозначенные r+ и r, соединяют планету, соответственно, с Солнцем и с противоположным ему, пустым фокусом эллипса.

Уравнение слева мы можем решить, найдя из него x:



Подставляя результат в формулу для cos φ, выражаем связь между углами θ и φ:



Поскольку равенство справедливо при любых значениях угла θ, изменение в левой части равенства должно быть равно изменению в правой части при любом изменении θ. Допустим, мы производим бесконечно малое его изменение δθ (дельта тета). Чтобы рассчитать, насколько изменится φ, прибегнем к правилу дифференциального исчисления, согласно которому изменение любого угла α (это может быть θ или φ) на величину δα (дельта альфа) приводит к изменению cos α на величину – (δα/R) sin α. Оттуда же при изменении любой функции f, такой, например, как знаменатель в уравнении (5), на ничтожно малую величину δf изменение в отношении 1/f составляет −δf/f2. Приравняв соответствующие изменения с обеих сторон равенства, получаем:



Теперь нам нужна формула, связывающая sin φ и sin θ. Для этого посмотрим на рис. 15 и обратим внимание, что вертикальная координата y точки на линии эллипса выражается как y = r + sin θ, а также y = r − sin φ, и, поделив их, сократив y, получаем:



Совмещая уравнения (7) и (6), имеем:



Итак, какова же площадь, описываемая радиус-вектором планеты, проведенным от Солнца, когда угол θ изменяется на δθ? Измеряя углы в градусах, мы можем сказать, что это площадь равнобедренного треугольника, две равные стороны которого имеют длину r+, а третья – маленькая часть дуги общей длиной 2πr+ окружности радиусом r+, равная 2πr+ × δθ/360°. Она равна



В этой формуле поставлен минус, поскольку мы хотим, чтобы величина δA росла, если увеличивается угол φ; но если вспомнить, как мы определили эти углы, φ будет расти в том случае, если уменьшается θ, поэтому δφ больше нуля, когда δθ меньше нуля. Поэтому уравнение (8) можно переписать в виде: