Очерки о Вселенной — страница 24 из 111

которые благодаря густоте своего расположения и многочисленности сливаются для нас в яркое и сплошное на вид кольцо.

Сравнение спектра кольца Сатурна со спектром Солнца показало, что между ними нет заметных различий, а это означает, что частички кольца должны быть во много раз больше длины световой волны, т. е. значительно больше тысячной доли миллиметра. Если бы они являлись пылинками, у которых размеры сравнимы с длиной световой волны, то из состава падающего на них солнечного света они рассеивали бы сильнее всего голубые лучи. В результате кольца Сатурна отражали бы голубые лучи лучше, чем остальные, их цвет был бы голубее цвета Солнца, и голубая часть спектра колец была бы ярче, чем в спектре Солнца. Так же как частицы такой мельчайшей пыли, ведут себя и молекулы воздуха. Это их свойство и придает небу голубой цвет, делает голубую часть спектра неба более яркой, чем в спектре Солнца, свет которого молекулы воздуха рассеивают и делают дневное небо светлым. По распределению энергии в спектре света, отраженного кольцом Сатурна, оно очень сходно с обыкновенным льдом, но не с замерзшей углекислотой. По-видимому, частички кольца покрыты слоем льда или даже состоят из него.

К сожалению, из упомянутых данных нельзя определить наибольшую возможную величину частиц сатурнова кольца, — нет ли среди них таких, которые подобны обычным метеоритам, падающим на Землю, или даже таких, которые по своей величине сравнимы с мелкими астероидами. Изучение изменения яркости колец в зависимости от угла, под которым мы на них смотрим, приводит к выводу, что среди составляющих их частиц большинство отбрасывает довольно длинные тени и, следовательно, имеет размеры скорее порядка размеров метеоритов, чем размеров метеоров.

Доктор физико-математических наук М. С. Бобров, будучи моим учеником, еще до Великой Отечественной войны заинтересовался тайной строения кольца Сатурна и впоследствии, сопоставив все данные оптических и других наблюдений, заключил, что в среднем частицы кольца имеют размер около метра. В позднейшей работе он получил значительно меньшие размеры — от 0,35 до 35 мм. Обнаруженная затем медленность прогревания частиц кольца Солнцем после выхода их из тени говорит в пользу первого вывода: о более крупном размере частиц. В пользу частиц порядка метра снова говорят результаты радиолокации Сатурна, осуществленной впервые в 1973 г. От самой планеты отраженный радиосигнал не был получен, а от кольца сигналы отразились с большей силой, чем ожидалось. Из этого был сделан вывод, что кольцо состоит из метровых, а может быть, и больших глыб угловатой формы.

Внутреннее, креповое кольцо Сатурна оказывается по данным академика Г. А. Шайна более голубоватым, т. е. оно отчасти должно состоять и из мельчайших пылинок, по размерам сравнимых с длиной световой волны.

Полная ширина кольца Сатурна так велика, что по нему, как по дорожке, свободно мог бы катиться земной шар, диаметр которого (12 740 км) в пять раз меньше ширины кольца. Из трех его главных частей — средняя наиболее яркая и плотная (кольцо «В») шириной 26 000 км. Щель Кассини, отделяющая от него самое внешнее кольцо «А», имеет в ширину 5000 км, а ширина кольца «А» — 16 000 км. Полупрозрачное, креповое кольцо «С» светится слабо и позволяет видеть сквозь него поверхность планеты; его ширина 18 000 км. Представьте себе теперь, что при такой ширине толщина колец лежит в пределах 1 1/2 — 3 км!

Заключение об общей массе кольца можно вывести, исходя из теории его устойчивости. Масса колец не больше 1/4 массы Луны и, вероятно, гораздо меньше, как это было найдено из наблюдений над возмущениями, производимыми в движении спутников Сатурна притяжением кольца. Кольца и спутники взаимно возмущают друг друга.

Насколько больше солнечного света отражает эта небольшая масса, чем та же масса, собранная в один шар! Если бы четверть лунной массы мы превратили в метеориты и разместили их в кольце кругом Земли, то получили бы освещение в тысячи раз более сильное, чем то, которое получаем теперь от своего спутника.

Как интересно было бы перенестись на Сатурн и любоваться оттуда его кольцами!

Увы, тут нас ожидало бы разочарование, так как от полюса до широты 64° на Сатурне кольца не видны вовсе — их загораживает выпуклость шара самой планеты и лишь в экваториальной области планеты между широтами +35° и -35° видна вся ширина колец. Однако здесь они видны всего лишь под углом 12° и меньше, поднимаясь над горизонтом наподобие радуги, а с экватора планеты они видны совсем с ребра — в виде яркой, но очень узкой полосы, проходящей через зенит и делящей все небо пополам. Если еще учесть, что одна сторона колец освещена, а другая темная, то мы придем к заключению, что на любом из полушарий Сатурна кольца можно видеть только в течение полугода. Речь идет, конечно, о сатурновом полугодии, равном нашим 15 годам. Большей частью в эпоху видимости колец на данном полушарии Сатурна они видны днем, от чего красота зрелища проигрывает, а ночью часть кольца покрыта тенью самой планеты. Наконец, если вспомнить, что Сатурн вечно окружен облаками, сплошным покровом окутывающими его атмосферу, то мы придем к заключению, что практически, перенесясь на Сатурн, мы бы с него колец вообще никогда не видели. Итак, если хотите лучше всего рассмотреть метеоритные кольца Сатурна, то не переселяйтесь на Сатурн! Лучше всего их можно было бы рассматривать с какого-либо из спутников этой планеты, но опять-таки под небольшим углом, почти с ребра.

Рис. 63. Воображаемый вид колец Сатурна из верхних слоев его атмосферы

Быть может, некогда один из таких спутников Сатурна, ближайший к нему и вознамерившийся было подойти еще ближе, был наказан за свою дерзость тем, что был обращен в метеоритное кольцо.

Французский математик Рош еще в 1850 г. доказал, что жидкий спутник какой-либо планеты, находясь к ней ближе некоторого предельного расстояния, должен быть разорван на части приливными силами. Для спутника, имеющего плотность, одинаковую с плотностью планеты, этот «предел Роша» составляет 2,44 радиуса планеты. Ближайший из спутников Сатурна, Мимас, отстоит от его центра на 3,11 радиуса планеты, а внешний край кольца — на 2,30 радиуса Сатурна. Итак, кольцо Сатурна целиком находится внутри предела Роша, внутри зоны, запретной для спутников, желающих сохранить свою целость. Это подтверждает справедливость теории Роша и возможность образования кольца за счет разрушения одного из спутников, который либо начал было образовываться в этой зоне при рождении Солнечной системы, да так и не смог образоваться, либо же он попал в нее извне благодаря возмущениям. Заметим, однако, что для твердого сплошного спутника предел Роша будет гораздо меньше, чем для жидкого тела.

В 1966 г. было открыто самое широкое внешнее кольцо Сатурна, названное кольцом D. Его размер вдвое больше, чем система колец, известная ранее. Но это кольцо крайне разрежено. Открытый в 1966 г. спутник Янус и более далекий спутник Энцелад двигаются внутри кольца D, как в сопротивляющейся среде, Мимас же лишь пересекает кольцо D, потому что его орбита наклонена к плоскости кольца. Эти новые данные согласуются с последним нашим замечанием, касающимся предела Роша.

Щели в кольцах образовались вследствие возмущения движения метеоритных частиц притяжением спутников Сатурна. Там, где период обращения частиц соизмерим с периодом одного из внутренних спутников, возмущения особенно велики и делают орбиты частиц неустойчивыми. В тех местах, где периоды обращения частиц составляют 1/2, 1/3 или 1/4 от периода обращения близких спутников, эти частицы задерживаются недолго, и эти области почти не заняты их орбитами, а значит, и самими частицами, — там образуются пустоты, щели. Такие же прогалины наблюдаются и в орбитах астероидов, в тех местах, где их периоды обращения были бы соизмеримы с периодом обращения Юпитера.

Щель Кассини в кольцах соответствует периодам обращения, равным 1/2 периода обращения Мимаса, 1/3 и 1/4 периодов обращения двух следующих спутников Сатурна. Аналогичные соотношения встречаются и для других щелей, наблюдаемых в кольцах.

На окраинах Солнечной системы

На окраинах Солнечной системы «циркулируют» Уран и Нептун, принадлежащие к группе планет-гигантов, хотя они значительно меньше Сатурна, а также Плутон. Плутон в 40 раз дальше от Солнца, чем Земля, и наше светило видно с Плутона как ослепительно яркая звезда. Диск Солнца человеческим глазом без телескопа был бы оттуда неразличим — так он мал.

Об Уране и Нептуне можно сказать немного. Их атмосферы обширны, как у Юпитера и Сатурна, а поверхность планет целиком скрыта облаками. Облака образуют трудноразличимые полосы, подобные юпитеровым. В водородно-гелиевых атмосферах Урана и Нептуна вследствие низкой температуры аммиак частично вымерз. На Уране измеренная ранее температура оказалась ниже — 180 °C. Наблюдения его радиоизлучения привели к температуре в среднем -100 °C на длине волны 1,9 см и -170° на длине волны 11 см. Все эти данные относятся, по-видимому, к разным слоям урановой атмосферы. Для Нептуна температура оказалась градусов на 15–20 ниже. За 20 лет, прошедших после первого определения теплового излучения Венеры радиометодами, мощность радиотелескопов возросла более чем в 10 000 раз. Это позволило измерить радиоизлучение каждой из планет, кроме Плутона, для исследования которого возможности современной аппаратуры пока недостаточны. В сочетании с измерениями инфракрасного теплового излучения планет радиоастрономические данные принесли важную информацию. Найдено, что температура поверхности облачного слоя Урана определяется только падающим на него солнечным излучением, а Нептун, подобно Юпитеру и Сатурну, излучает приблизительно в 1 1/2 раза больше энергии, чем поглощает. Следовательно, там действуют внутренние источники энергии колоссальной мощности. Период вращения Урана составляет 10 час. 50 мин., а период Нептуна установлен менее точно. Из спектральных наблюдений он получился равным 16 часам с возможной ошибкой порядка одного часа, а из периодических колебаний его блеска 12 час. 43 мин. Первое число заслуживает большего доверия. Интересно, что Нептун вращается в прямом направлении, а Уран в обратном, не так, как остальные планеты. При этом ось Урана наклонена к плоскости его орбиты на 98°, и он вращается как бы «лежа на боку». Это обусловливает очень резкие смены времен года, который на этой далекой и холодной планете равен 84 земным годам. Но смены времен года в этом вечном холоде никого не беспокоят, ибо вся троица окраинных планет не может быть носительницей жизни.