ветящегося газа.
Для примера назовем пару эллиптических галактик NGC 750-1, соединенных тонкой перемычкой. При длительной экспозиции вся эта система оказалась погруженной в обширный звездный туман.
Другой пример представляет пара спиральных галактик, соединенных перемычкой, которая тянется на 200 000 световых лет, что превышает размеры самих галактик. При этом у одной из галактик имеется почти такой же длинный хвост. В случае яркой и близкой к нам галактики М 51 в созвездии Гончих Псов перемычкой является одна из спиральных ветвей большей галактики. Автор нашел ряд подобных ей пар. Внимание обращает на себя тот факт, что хвосты встречаются гораздо чаще, чем перемычки, и обычно они ярче. Особенно резко это видно на примере системы NGC 4676 (Мышки), обнаруженной автором.
Объекты, изображенные в «Атласе взаимодействующих галактик», стали всесторонне изучаться в разных странах. Чрезвычайно интересен Атлас пекулярных (особенных) галактик, составленный в 1966 г. Арпом. Он сфотографировал на 5-метровом телескопе половину объектов из «Атласа взаимодействующих галактик» и одиночные необыкновенные галактики. Благодаря в пять раз большему масштабу и специальным мерам, потрясающие особенности их выявились особенно четко. Автор этой книги доказал, что описанные явления взаимодействия — это не приливные и антиприливные выступы, как до сих пор считали. Наоборот, прилив должен быть сильнее на стороне, обращенной к возмущающему телу. Кроме того, у пар галактик часто заметно, что они менее ярки на сторонах, обращенных друг к другу; ярких белых звезд, обрисовывающих спиральные ветви, там мало. Деформации подвергаются именно спиральные ветви, происхождение которых не получило еще удовлетворительного объяснения.
Изучение двух атласов взаимодействующих галактик, изданных в 1959 и 1976 гг., убедило автора зтих строк в том, что еще и сейчас происходит процесс фрагментации галактик. Некоторые крупные галактики распадаются на две-три части или же от них на периферии отпочковываются малые спутники. Начальной фазой фрагментации являются «гнезда» галактик (рис. 188 и 189), превращающиеся в рассеянные группы их. Надо думать, что формы взаимодействия галактик объясняются не только действием приливов по закону тяготения, но и еще не изученными электромагнитными взаимодействиями. Однако мы наблюдаем перемычки и хвосты и у эллиптических галактик, не содержащих газа. Это заставляет думать, что мы натолкнулись на какие-то свойства, которыми такая система, как галактика, обладает в целом.
Это какие-то совершенно новые свойства и между галактиками могут действовать силы иной природы, чем уже знакомые нам тяготение и магнетизм.
Нет ничего невероятного в этой возможности. Вместо тяготения в мире молекул возникают молекулярные силы, а в мире еще более мелких частиц, в ядрах атомов, — ядерные силы и квантовые процессы. Несомненно, что и в области систем все возрастающих размеров на смену тяготению, в основном определяющему движение планет и двойных звезд и их формы, где-нибудь выступят новые силы или формы взаимодействия.
Если эти представления подтвердятся, то окажется, что человек проник не только в особые законы, управляющие превращениями элементарных частиц в атомах, но и в особые законы наиболее крупных среди известных нам материальных систем.
Быстродействующие электронные вычислительные машины позволили рассчитать движение частиц, обращающихся в одной плоскости вокруг ядра галактики под действием приливного возмущения, производимого другой галактикой, пролетающей мимо нашей со скоростью, близкой к параболической. Выяснилось, что должны образовываться перемычки и хвосты, все же далеко не объясняющие многообразие наблюдаемых форм.
Нормальные спиральные и неправильные галактики испускают радиоизлучение, сравнимое с радиоизлучением нашей Галактики. Это радиоизлучение усиливается при переходе от галактик Sa к галактикам Sc и к неправильным, вместе с увеличением содержания в них горячего водорода. На это тепловое излучение, непрерывное по спектру, накладывается еще излучение нейтрального водорода на длине всйь ны 21 см и непрерывное нетепловое излучение, обусловленное торможением космических лучей в магнитном поле галактики.
Были обнаружены, кроме того, радиогалактики, посылающие необыкновенно много нетеплового радиоизлучения. Оно объясняется магнитным торможением чрезвычайно большого числа электронов и протонов, движущихся со скоростями, близкими к скорости света, и называемых релятивистскими.
Между светимостью галактики в оптических лучах и в радиодиапазоне нет пропорциональности.
Ближайшими к нам радиогалактиками являются NGC 5128 или Центавр А и М 87 (NGC 4486), или Дева А. Их видимый блеск 8 т и оптическая светимость велики. Расстояние до них равно 30 млн. световых лет.
Между тем самой мощной из известных радиогалактик и даже самым мощным внегалактическим видимым источником является очень далекая галактика Лебедь А. Она имеет звездную величину 16m, т. е. в полторы тысячи раз слабее предыдущих по видимому блеску и отстоит от нас в 20 раз дальше, чем Центавр А. Поток радиоизлучения от нее на Земле в 10 раз больше, чем от Центавра А, а радиосветимость больше примерно в 4000 раз.
Сейчас с каждым годом открывают все новые и новые, все более слабые источники радиоизлучения, которые постепенно отождествляются со все более слабыми, т. е. со все более далекими галактиками. Число известных радиогалактик быстро возрастает. Вначале предполагали, что колоссальное радиоизлучение возникает, когда сталкиваются газовые массы, которыми начинены две соударяющиеся галактики. Но автор этой книги еще в 1957 г. показал, что этого не может быть по ряду соображений. Постепенно всеми было признано, что мощное радиоизлучение свойственно одиночным галактикам, а не является следствием столкновения двух галактик. Однако, с другой стороны, оказалось, что большинство внегалактических источников являются двойными. Радиоизлучающие компоненты в среднем отстоят друг от друга на 600 000 световых лет, а оптически видимая галактика находится между ними и излучает радиоволны более слабо. Вообще, как правило, радиоизлучающая область оказывается гораздо большей, чем оптическая видимая галактика. Например, галактика NGC 5128 имеет размер около 90X70 тыс. световых лет, почти круглая, а связанный с нею радиоисточник Центавр А сильно вытянут и длина его свыше полутора миллионов световых лет! В случае Лебедя А два облака имеют диаметр по 200 000 световых лет, а расстояние между их центрами 300 000 световых лет. Находящаяся между ними оптически видимая галактика гораздо меньше. В 1966 г. вблизи нее были открыты еще четыре симметрично расположенных, почти точечных радиоисточника, чем ее радиоструктура осложняется еще больше.
У радиогалактик NGC 5128 и М 87 обнаружены в оптических лучах две особенности. Обе они по форме и структуре обычные эллиптические галактики, почти сферические, но первая из них пересечена необычайно мощной и клочковатой темной полосой, а вторая имеет отходящий рт ее центра узловатый отросток, считаемый выбросом. Большинство радиогалактик имеет в спектре яркие, иногда очень широкие полосы. Много усилий было затрачено на то, чтобы обнаружить у радиогалактик какие-либо общие особенности в их форме или в виде их спектра. Однако их не нашлось. Мы никогда не знаем, какая из галактик окажется радиогалактикой. Более того, автор этой книги показал, что среди обычных, не радиоизлучающих галактик многие при тщательном изучении обнаруживают такие же особенности, как и радиогалактики. В частности, он указал, что так называемые радиогалактики Сейферта также имеют очень широкие яркие полосы в спектре, говорящие о растекании газов со скоростями почти до 5000 км/сек. Позднее оказалось, что одна из таких галактик (NGC 1068), противопоставлявшихся радиогалактикам, является тоже радиогалактикой, что подтвердило внешнюю неразличимость обычных галактик от радиогалактик. Известны также галактики с очень сильными, но узкими линиями излучения в спектре, которые, однако, не являются радиогалактиками. Их открыл мексиканский астроном Аро.
Теперь известно уже много радиоизлучающих галактик Сейферта. Вероятно, радиоизлучение у них возникает по временам, так же как и мощные выбросы и истечение газов из ядра. Они-то и являются причиной появления широких ярких полос в их спектре. Голубоватый цвет этих галактик обусловлен не звездным, а синхротронным свечением их маленьких, но очень ярких ядер. Такой же аномально яркий конец спектра имеют далекие галактики, во множестве обнаруженные Б. Е. Маркаряном. Некоторые из них принадлежат к типу галактик Сейферта.
Самым удивительным открытием последних лет было обнаружение Сандейджем и Шмидтом (США) необычных источников радиоизлучения. После уточнения координат мощных источников радиоизлучения некоторые из них пришлось отождествить с очень слабыми точечными объектами, не отличимыми от звезд даже в самые сильные телескопы. Сомнения в правильности их отождествления отпали, когда удалось получить и расшифровать спектры этих голубоватых «звездочек» — они явно оказались не звездами. Эти объекты назвали квазизвездными («подобными звездам») источниками радиоизлучения или, сокращенно (на английском языке), квазарами. В их спектрах, как правило, видны яркие линии, которые долго не могли отождествить. Не могли их отождествить долго потому, что это были линии, находящиеся нормально в далекой ультрафиолетовой области спектра, которая в спектрах небесных тел недоступна для наблюдений из-за ее поглощения в земной атмосфере. Чудовищное красное смещение в спектре квазаров сместило эти линии в наблюдаемую область спектра. Красное смещение квазаров в большинстве случаев оказалось гораздо больше, чем у самых далеких галактик, у которых его удалось измерить. Например, линия водорода серии Лаймана Lα с длиной волны 1216 А, которую в спектре Солнца удалось сфотографировать только с высотных ракет, стала линией видимого спектра. Для таких объектов красное смещение выражают величиной Δz=Δλ:λ. Наибольшее измеренное сейчас у квазаров красное смещение превышает Δz=3,5. По закону Хаббла таким смещениям соответствуют расстояния в миллиарды световых лет. Однако точный перевод их в расстояние требует знания модели устройства нашей Вселенной.