Это происходит потому, что в теоретически мыслимых моделях разного типа красное смещение на больших расстояниях может меняться не пропорционально расстоянию, как для меньших расстояний. То же надо сказать и о переводе величины z в скорость по лучу зрения по формуле принципа Доплера.
Большинство квазаров обозначается номерами по третьему Кэмбриджскому каталогу источников радиоизлучения, обозначаемому сокращенно 3С. Ближайший и самый яркий квазар выглядит как звезда около 12m,7. Его красное смещение z=0,16 и скорость 48 000 км/сек. Открытие квазаров происходит с потрясающей быстротой. К 1976 г. стало известно уже более 200 квазаров, самые слабые из которых имеют звездную величину почти 19m. У одного из самых далеких квазаров, 3C 9 (z=2,012), лучевая скорость порядка 240 000 км/сек, т. е. очень близка к скорости света. Его расстояние (напоминаем, что это ориентировочно) порядка 9 млрд. световых лет (9 млрд. лет — это вдвое больше, чем возраст Земли). 3С 9 был одним из самых далеких объектов Вселенной. А сколько нового будет выяснено к тому времени, когда эта книга попадет вам в руки!
Если красное смещение в спектрах квазаров той же природы, что у галактик, то, значит расстояния до них громадны и, оказывается, что их оптическая светимость раз в 100 больше, чем у ярчайших галактик и радиогалактик! А их радиоизлучение почти такое же и не меньше, чем у радиогалактик, 1045–1046 эрг/сек, отчего их и назвали квази- (т. е. «как бы») звездными радиогалактиками или звездными источниками радиоизлучения. Природа их излучения, как и у радиогалактик, должна быть синхротронной, т. е. объясняться магнитно-тормозным излучением релятивистских электронов.
Быстро возросшая точность измерения угловых размеров источников радиоизлучения показала к 1976 г., что многие квазары имеют диаметры радио-излучающей области в доли секунды дуги, часто менее 0",1. И оптически они не отличимы от звезд. (Оптически диаметры менее 0",5 невозможно измерить из-за неспокойствия земной атмосферы.) Следовательно, оптические размеры квазаров не превышают нескольких сотен световых лет. Однако, смущая нас, около 3С 273 и 3С 48 имеются крайне слабо светящиеся полоски длиной около 200 000 световых лет. Точнее говоря, оптически видимое звездное изображение у 3С 273 окружено в радиолучах слабым ореолом, а на расстоянии 19",5 от него видна слабая полоска, дающая в девять раз более сильное радиоизлучение. В 3С 48 «звездочка» 16m окружена пятью туманностями на расстояниях до 12". Итак, вид квазаров различен, но ни один из них не похож на обычные галактики, а размеры в сравнении с последними крайне малы. Возможно, что и в оптическом излучении квазаров преобладает синхротронное излучение.
Новую неожиданность принесло открытие, что и видимый блеск, и радиоизлучение квазаров меняются очень заметно. Оказались меняющимися и профили ярких линий, принадлежащих горячим газам.
В 1965 г. Сандейдж в США сделал еще одно сенсационное открытие. Он обнаружил в направлении на полюс Галактики множество очень слабых голубых звездообразных объектов, по цвету сходных с квазарами. Он получил фотографии спектров шести из них. Один спектр принадлежал обычной, сравнительно близкой звезде, два спектра были без всяких линий, а в трех случаях обнаружились яркие линии с огромными красными смещениями, как у квазаров, хотя радиоизлучение от них пока не обнаружено.
Такие объекты Сандейдж назвал «квазизвездными галактиками» или, сокращенно, квазагами и из измерения числа голубых объектов заключил, что их должно быть в сотни раз больше, чем квазаров. (Этим объектам давали и другие названия, которыми лучше не пользоваться.) Последующие исследования показали, что большинство голубых объектов у полюса Галактики — это голубоватые звезды разных типов, принадлежащие к окраинам нашей Галактики, а квазагов в действительности раз в 10 меньше, но все же много больше в единице объема, чем квазаров. Цвикки считает, что квазаги Сандейджа тождественны тем его крайне компактным галактикам, которые голубоваты и имеют яркие линии в спектре. (Речь идет о тождестве типов, а не индивидуальных объектов.) Полагают, что, может быть, квазары являются кратковременной фазой бурного развития квазагов, отчего мощное радиоизлучение наблюдается только у немногих из них, когда мы их и регистрируем как квазары. Во всяком случае, открытие квазаров и квазагов явилось самым волнующим открытием в астрономии не только за последнее время. Ведь это какие-то совершенно новые виды небесных светил с загадочными свойствами, быть может, подводящими нас к открытию величайших законов природы.
Когда знакомишься с открытиями последних десятилетий в астрономии, можно перестать удивляться чему-либо. Взять хотя бы открытие гигантских взрывов в солнечной атмосфере. Но и они бледнеют перед взрывами на вспыхивающих звездах типаПУ Кита. А что сказать о взрывах в новых звездах, наконец, о взрывах в сверхновых звездах? И вот мы подошли к рассказу о взрывах в островных вселенных!
У большой и красивой спиральной галактики в Большой Медведице, М 81, есть спутник. Это невзрачная продолговатая туманность М 82, имеющая как бы «рваные» края. Она не привлекала к себе внимания, хотя и отличается от обычных неправильных галактик тем, что содержит много пыли и в то же время не содержит горячих, голубых гигантов, хотя ее спектр класса А. М 82 и явилась прототипом неправильных галактик Ir II. Сейчас М 82 стала самой «модной» галактикой, так как она впервые показала существование взрывов в масштабе галактик и помогла ближе подойти к пониманию двойных источников радиоизлучения и квазаров. У М 82 было обнаружено повышенное радиоизлучение, но знаменитостью ее сделали исследования Сандейджа и Линдса (1963 г.).
На снимках М 82, сделанных в лучах красной водородной линии Нα, четко выступили длинные волокна водорода, идущие в обе стороны от центра. Они тянутся перпендикулярно к плоскости галактики, которая образует малый угол с лучом зрения и оттого выглядит продолговатой. Оказалось, что газ этих волокон имеет тем большую скорость, чем он дальше от центра. Это значит, что перед нами последствия гигантского взрыва, выбросившего из центра галактики полтора миллиона лет назад со скоростями до 1000 км/сек массу газа порядка 5 1/2 млн. солнечных масс. Это равно массе нескольких шаровых звездных скоплений. Кроме красных водородных волокон, видны и голубоватые волокна, дающие непрерывный спектр, и их свет поляризован. Очевидно, это потоки быстрых электронов, дающие синхротронное свечение и в видимых лучах и излучение в радиодиапазоне. Они же при столкновении с атомами водорода ионизуют его. Потоки газа к полюсам этой вращающейся галактики, а не в ее плоскости, обусловлены тем, что они встретили в ней сопротивление спокойных газов, имевшихся там уже ранее. Там газ перемешан с поглощающей свет пылью, которую вы видите. Кинетическая энергия разлетающегося газа в М 82 составляет около 21055 эрг, а ее излучение с момента взрыва за истекшие полтора миллиона лет составляет почти 1056 эрг. Это в миллион раз больше, чем энергия, выделяемая при вспышке сверхновой звезды, — самого мощного взрыва, известного ранее. Сейчас выброшенный газ распространился на 10 000 световых лет от центра. Через 10 млн. лет он выйдет за границы галактики. Запасенная газом и электронами энергия израсходуется, плотность их упадет, они рассеются, и следов взрыва уже не будет видно. Взрыв и сопровождающее его радиоизлучение — явление скоротечное в сравнении с возрастом галактик, оцениваемым примерно в 10 млрд. лет.
Еще до исследования М 82 предполагали, что двойные источники радиоизлучения, между компонентами которых находится видимая галактика, образованы взрывами. В галактике происходит взрыв, выбрасывающий два огромных облака газа, начиненных релятивистскими электронами, как губка водой. По закону сохранения количества движения скорости облаков противоположны, а старый газ, находящийся в плоскости галактики, заставляет их двигаться к полюсам вращения. После выхода из галактики облаков, радиоизлучающих синхротронно, мы и видим два обширных радиоисточника по обе стороны от породившей их галактики. Явления, обнаруженные оптически в М 82, дали подтверждение этому объяснению. Только в радиогалактиках выход энергии еще грандиознее, чем в М 82. За период пребывания системы Лебедь А в стадии радиогалактики, оцениваемый в миллион лет, излучается 31058 эрг. Это энергия синхротронного излучения; вместе с кинетической, вместе с потерями энергии при ее переходе в кинетическую и т. д. энергия взрыва в системе Лебедь А была, вероятно, 1060–1061 эрг. Она равна энергии превращения в гелий водорода с массой в миллиард солнечных масс. Колоссальность этого почти мгновенного освобождения энергии и неизвестность физического механизма ее источника — все это и является главной загадкой происхождения и радиогалактик, и квазаров, энергии которых одинаковы.
На сходство спектров галактик Сейферта и некоторых радиогалактик автор этой книги указывал еще в 1956 г. Теперь на это сходство обращено еще большее внимание. Оказалось, что бурное истечение горячих газов из ядер галактик Сейферта имеет взрывное происхождение и напоминает то, что наблюдается во взрывающейся радиогалактике М 82. Выход энергии там тоже значителен, а ядра их звездообразны, т. е. очень малы. Более того, в центре двух галактик Сейферта обнаружены точечные источники радиоизлучения. Поэтому говорят, что в центре их находится подобие маленького квазара. Квазары — это как бы мощные взорвавшиеся ядра галактик Сейферта, но без окружающей их звездной галактики.
Особенную трудность представляет собой объяснение квазаров. К трудности найти для них нужные чудовищные источники энергии, механизмы ее освобождения и превращения в энергию релятивистских электронов и энергию их суммарного движения присоединяется трудность объяснения их малых размеров. Дело в том, что они не могут быть звездными системами. Большое собрание звезд не может испытывать те быстрые колебания суммарного блеска и радиоизлучения, какие наблюдаются. Это должно быть одно огромное тело. Вначале высказывалась гипотеза, что в большом облаке газа с массой около 108 масс Солнца происходит под действием тяготения катастрофическое сжатие, так называемый коллапс. Образуется сверхзвезда. Сжатие освобождает колоссальное количество гравитационной энергии. Но как она может перейти в энергию релятивистских электронов, неизвестно. Вначале квазары согласно этой гипотезе поторопились назвать сверхзвездами. Однако эта гипотеза не получила широкого признания, и для объяснения квазаров было выдвинуто около десятка разных гипотез, которые сейчас обсуждаются. Среди них есть группа гипотез, пытающихся рассматривать квазары как более близкие к нам объекты, а красное смещение в их спектрах объяснять иначе, чем эффектом их дальности от нас. Едва ли эти попытки будут иметь успех. Мы не имеем возможности перечислять, а тем более разбирать многочисленные гипотезы о квазарах, из которых ни одна не получила признания. Быстрое накопление фактических данных ускорит нахождение правильного объяснения их.