В Великую Отечественную войну на танкоопасных направлениях наши войска, помимо обычных минных полей, устраивали поля из бутылок с КС. Широко применялись бутылки и в системе противотанковых и противопехотных заграждений, В оборонительных боях под Москвой использовали уже «огневые валы» и «поля». Огыевые валы устраивали из различных горючих материалов и поджигали бутылками «КС». В минных полях зажигательные бутылки располагали в шахматном порядке в сочетании с противотанковыми минами. А для борьбы с пехотой наши бойцы использовали «миноогнефугасы». В ямы, отрытые перед передним краем, укладывалось до 20 бутылок и небольшие заряды ВВ, подрываемые дистанционно. Площадь сплошного поражения такого фугаса составляла в среднем 250 м 2 .
Таким образом, огневая преграда в основном играет роль временно труднопреодолимого огневого рубежа и подавляюще действует на наступающую сторону.
5.9. Огневодные заграждения
Одним из самых эффективных видов искусственных инженерных препятствий являются огневодные заграждения, используемые в качестве противодесантной обороны. Военные специалисты рассматривают создание ог- неводных преград в качестве одного из важных элементов оперативного оборудования территории.
Огневодные заграждения образуются путем воспламенения разлитых на поверхности воды горючих жидкостей (нефть, нефтепродукты и т. п.) или смесей (напалм и др.).
Такие заграждения характеризуются высокой температурой горения (›1000°С), свойством налипать на различные поверхности (десантно-высадочные средства), высокой концентрацией окиси углерода, наличием сильных воздушных потоков, образованных вследствие недостатка кислорода и втягивающих переправочно-десантные средства в зону горения. Согласно оценке военных специалистов, минимальная толщина пленки горючей жидкости на воде, обеспечивающая воспламенение, со- ставляет для бензина 0,6мм (расход бензина 0,6 л на 1 м поверхности), для нефти 3 мм (3 л на 1 м 2 ). Интенсивность горения пленки нефти и нефтепродуктов в среднем около 1 мм/мин. Поданным исследований, наибольший эффект поражения достигается при создании очагов горения на расстоянии друг от друга не более 50 м.
Известны случаи использования зажигательных средств для устройства заграждений на воде в период Второй мировой войны. Так, в конце 1940 г. англичане с целью защиты от высадки немецкого десанта уложили под водой, вблизи некоторых участков побережья, трубы с горючей жидкостью (нефтью). В нужный момент жидкость могла быть выпущена на поверхность и воспламениться. Однако боевой проверки это средство не получило.
Во время обороны Севастополя в 1941-1942 гг. наступавшие немецкие войска были неожиданно остановлены стеной огня горевшей в бетонной канаве жидкости, поступавшей туда по трубам.
Сами немцы использовали огневодные заграждения довольно ограниченно и фактически только в конце войны, когда вермахт вел жестокие оборонительные бои. К тому же этому способствовала географическая ситуация; союзники (как советские, так и англо-американские войска) наступали вдоль морского побережья и поперек направления течения многочисленных рек, последовательно их форсируя. В этих условиях огненные преграды на воде оказались для немцев очень кстати.
В прессе приводились сведения о подготовке армии США к созданию в Западной Европе огневодных заграждений, образуемых путем сброса в воду имеющихся запасов нефти и нефтепродуктов, расположенных вдоль внутренних водных путей. При этом рассматривались следующие способы образования этих заграждений; выпуск горючей жидкости из резервуаров нефтебаз, разрушение нефтепроводов в месте пересечения ими водных преград, подрыв танкеров и эластичных емкостей, служащих для транспортировки нефтепродуктов по водным путям. Для воспламенения разлитой по поверхности воды горючей жидкости предполагается использовать стандартные воспламенители, применяемые войсками армий НАТО в огневых фугасах, баках и авиабомбах, снаряженных напалмом, а также электровоспламенители, ранцевые и танковые огнеметы.
В армиях Запада в последнее время большое внимание уделяется исследованию возможностей применения горючих жидкостей на основе нефтепродуктов. В частности, военные специалисты планируют использовать сырую нефть или другие легковоспламеняющиеся жидкости для устройства так называемых огневодных заграждений, принцип действия которых основан на горении нефтепродуктов, разлитых на поверхности водной преграды (реки, канала и т. п.), которую предстоит преодолеть противнику.
Вопросы, связанные с созданием огневодных заграждений, военные специалисты разрабатывали еще во времена Второй мировой войны. Однако ограниченные запасы нефти и нефтепродуктов не позволили в тот период применить такие заграждения в широких масштабах на Европейском театре войны. В основном этот тип инженерных заграждений использовали (в ограниченных количествах) гитлеровские войска на заключительном этапе войны, когда вермахт вел в основном оборонительные бои, а направление наступления союзников происходило в поперечном направлении относительно русел крупнейших рек, расположенных в зоне боевых действий.
В послевоенный период в странах Западной Европы потребление нефти и нефтепродуктов значительно увеличилось. Росли и их запасы, что позволило по-новому оценить возможности устройства огневодных заграждений на Европейском театре войны.
Почти все нефтеперерабатывающие заводы и значительная часть нефтебаз в Европе размещены по берегам рек и каналов: во Франции 17 из 19 действующих нефтеперерабатывающих заводов, в ФРГ 28 из 30, в Нидерландах – все нефтеперерабатывающие заводы.
Магистральные нефтепроводы, резервуарные парки нефтебаз и наливные суда, по взглядам военных специалистов, могут быть использованы для сброса нефти и нефтепродуктов на водную преграду с целью создания огне-водного заграждения. Не исключена также, по их мнению, возможность применения специальных систем для создания огневодных заграждений на важных в стратегическом отношении водных рубежах.
В зависимости от конкретных условий сброс нефти и нефтепродуктов на водную поверхность предполагается осуществлять двумя основными способами: включением насосного или компрессорного оборудования или подрывом стенок резервуара, трубопровода, танкера и т. п.
По мнению военных специалистов, успешному использованию нефтепроводов для сброса нефти на воду в значительной мере способствует наличие большого количества переходов трубопроводов через водные преграды. Так, трансальпийский нефтепровод на пути Триест- Инголыптадт пересекает 166 водных преград, в том числе такие реки, как Изонцо и Тальяменто в Италии, Гейл, Драва, Зальцах и Инн в Австрии, Изар и Дунай в ФРГ. Почти все переходы этого трубопровода – подводные, заглубленные ниже линии размыва речного дна. Через крупные водные преграды трубы подводного перехода укладываются в специально сооруженных тоннелях. Южноевропейский нефтепровод, например, на участке перехода через р. Дюранс уложен в тоннеле длиной 760 м, высотой 2,4 м и шириной 1,8 м. Нередко встречаются переходы и других типов: по эстакаде или специально сооруженному мосту, в виде самонссущего моста-трубопровода.
По мнению специалистов, подрыв стенок трубопровода на участке перехода через водную преграду дает возможность управлять сбросом нефти и нефтепродуктов на водную поверхность даже при автоматизированной системе управления работой трубопровода, останавливающей насосные станции при возникновении аварийной ситуации. Переход на ручное управление позволяет оператору центрально-диспетчерского пункта осуществлять подачу продукта к месту разрыва трубопровода.
Военные специалисты считают, что сброс на воду нефти или другой легковоспламеняющейся жидкости из береговых резервуаров и танкеров (или наливных барж) в зависимости от принятого способа может быть как неуправляемым (при подрыве), так и управляемым, т. е. осуществляться с помощью табельного или передвижного насосно-компрессорного оборудования.
Изучению процессов растекания нефтепродуктов по поверхности воды и горения пленки разлитой горючей жидкости уделяется большое внимание, особенно в плане борьбы с загрязнением водной поверхности. В этих исследованиях принимают участие и военные специалисты. В опубликованных материалах указывается, что на процесс растекания горючей жидкости по поверхности воды оказывают влияние количество разлитой жидкости и ее физико-химические свойства, скорость течения воды, скорость и направление ветра. В начальный момент времени после сброса на воду горючей жидкости процесс растекания ее происходит довольно интенсивно, так как определяется в основном действием гравитационных сил. В дальнейшем этот процесс замедляется и происходит под преобладающим влиянием сил поверхностного натяжения на границе раздела двух сред: нефтепродукт- воздух и нефтепродукт-вода. Вязкость нефтепродукта весьма незначительно влияет на процесс его растекания по поверхности воды. Ход процесса растекания определяется расчетами. Так, по сообщениям японской печати, при экспериментальной проверке расчетных данных 1000 т нефти, вылитые в море, распространились за 6 ч в радиусе 500 м.
Специалисты считают, что перемещение пленки нефтепродуктов по реке или каналу и их растекание происходит под влиянием поверхностной скорости течения воды. На эти процессы оказывают влияние сила и направление ветра. Исследованиями установлено, что дрейф нефтяных полей происходит со скоростью, составляющей 3-4% от средней скорости ветра в приводном слое. Минимальная толщина пленки колеблется от 6-15 мм для легких нефтепродуктов (бензин, газойль, машинное масло) до 20-25 мм для нефти. Толщина пленки нефти на морской воде, особенно после эмульгирования нефти, достигает 80-90 мм и более. Толщина пленки загущенных нефтепродуктов может быть еще большей.
Поджигание разлитой нефти или другой горючей жидкости планируется производить с помощью фосфорной или натриевой гранаты, электровоспламеняющего устройства, огнемета или другим способом. По расчетам военных специалистов, характер воспламенения пленки зависит от концентрации паров горючей жидкости в приповерхностном слое. При высокой степени концентрации может происходить детонационное воспламенение горючей жидкости. Если концентрация паров горючей жидкости невысока, то распространение фронта пламени по поверхности разлитой жидкости происходи