Онтогенез. От клетки до человека — страница 42 из 58

еру и пропорциональными относительно друг друга; голова, правда, была деформирована из-за позднего и неполного закрытия зазоров между костями черепа. В возрасте 13 лет у художника было нормальное телосложение, но затем ноги перестали расти, а туловище – нет. Поэтому в зрелом возрасте ноги выглядели короткими, и рост его составлял всего 1,5 м. Кости были хрупкими, и ноги часто болели.[278] Большинство современных медицинских генетиков, рассматривавших случай Тулуз-Лотрека, сходятся на том, что он страдал от генетического нарушения, которое теперь называется пикнодизостоз.[279],[280],[281]

Пикнодизостоз – заболевание крайне редкое. За всю историю медицины описано только около двухсот случаев. Он обусловлен мутацией в гене, кодирующем фермент, который должен в том числе высвобождать ИФР-I из костей.[282],[283],[284],[285] Если такого фермента нет, ИФР-I остается в «ловушке» и не может стимулировать рост. Пациентам с пикнодизостозом хорошо помогают дополнительные дозы гормона роста, поддерживающие уровень ИФР-I в нужных пределах.[286] Гораздо чаще, чем пикнодизостоз, встречается другой тип карликовости – ахондроплазия, затрагивающая примерно одного из 25 тысяч людей. Ахондроплазия вызвана мутацией в сигнальном рецепторе, которая нарушает нормальный рост костей конечностей.[287],[288],[289] Люди с ахондроплазией имеют непропорционально короткие конечности, а также определенные неправильности их формы и формы других частей тела.

Телосложение Тулуз-Лотрека и людей с ахондроплазией свидетельствует о том, что неспособность некоторых частей тела поспевать за общим ростом не обязательно останавливает рост всего организма. Таким образом, пропорциональность не является следствием того, что каждая часть тела постоянно «проверяет», не переросла ли она другие части. Разные части тела должны по-своему реагировать на гормон роста, ИФР-I и другие влияющие на рост гормоны. Это справедливо даже для двух однотипных частей тела. В одном особенно наглядном эксперименте, проведенном двадцать лет назад, рост одной задней лапы кролика ингибировался с помощью местного введения химического препарата. Вторая задняя лапа кролика продолжала расти нормально, и кролик вырос кривобоким. Очевидно, что одинаковая длина ног не обусловлена тем, что растущие конечности обмениваются сигналами и подстраиваются друг к другу в процессе удлинения.[290],[291]

Из строения конечностей Тулуз-Лотрека и людей с ахондроплазией следует еще один важный вывод. В обоих случаях определенное биохимическое нарушение, являющееся первопричиной отклонения в развитии, непосредственно влияет на рост длинных костей конечностей. Прямого влияния на рост кожи, мышц, нервов, кровеносных сосудов и т. д. нет, но тем не менее эти ткани не образуют вокруг короткой кости бесформенную мягкую массу, предназначенную для нормальной конечности. Они растут в соответствии с длиной аномальной конечности. Это хорошо иллюстрирует глубинную дихотомию контроля над размерами тела: некоторые ткани организма, например кости кролика в эксперименте, самостоятельно регулируют свой абсолютный размер и могут считаться главными детерминантами размеров тела, а другие ткани ориентируются не на свои абсолютные размеры, а на размеры относительно тканей первого типа. В плане контроля над размерами ткани второго типа оказываются подчиненными, их задача заключается в том, чтобы не отставать от роста тканей-начальников, но никогда не обгонять его. Поэтому проблема контроля над размерами распадается на два вопроса: во-первых, как ткани-начальники измеряют сами себя, и, во-вторых, как подчиненные ткани подстраиваются под начальников?

Давайте сначала посмотрим, как ткани-начальники, скажем кости, контролируют свой рост. Возьмем в качестве примера развитие конечностей. Кости конечностей растут не по всей длине, а в специализированной зоне роста – эпифизарной пластинке. Она располагается близко к концу, но не на самом конце кости. Эпифизарная пластинка подразделяется на несколько зон (рис. 75). На внешнем ее конце клетки активно размножаются. Эта пролиферация является одной из непосредственных причин роста кости, хотя и не самой главной. На внутренней границе зоны пролиферации клетки меняют свое поведение и начинают формировать хрящ – мягкий предшественник кости. За счет этого внутренняя граница зоны пролиферации смещается на один ряд клеток, так что в приграничном положении оказываются новые клетки. Им нужно некоторое время на то, чтобы отреагировать на изменение ситуации, после чего эти клетки тоже переключатся на образование хряща, и так далее. Таким образом, на дистальном конце зоны пролиферации постоянно появляются новые клетки, а на проксимальном конце клетки постоянно покидают эту зону и создают хрящ. В результате зона пролиферации продвигается вперед.


Рис. 75. Эпифизарная пластинка кости растущей конечности


Формирование хряща сопровождается увеличением объема: отчасти потому, что клетки увеличиваются в размерах, а отчасти потому, что они выделяют студенистое вещество, заполняющее межклеточное пространство. Это увеличение объема ткани и является основной причиной удлинения кости. Со временем хрящ созревает, хрящевые клетки отмирают и замещаются клетками, источником которых является прилегающая сформировавшаяся кость. Эти клетки заселяют хрящ, постепенно превращая его в костную ткань. Поскольку клетки в зоне пролиферации продолжают активно размножаться, процесс идет непрерывно: кость удлиняется, а зоны эпифизарной пластинки смещаются все дальше в дистальном направлении. Таким образом, скорость удлинения кости зависит прежде всего от скорости пролиферации клеток в наружной части эпифизарной пластинки и скорости, с которой клетки покидают зону пролиферации и начинают формировать хрящ.

Насколько мы знаем, скорость пролиферации и скорость перехода к созданию хряща зависят от сигналов двух типов: внутренних сигналов, которые организуют эпифизарную пластинку, и внешних сигналов, которые задают темп ее работы. Внутренние организующие сигналы необходимы для поддержания достаточного уровня пролиферации, то есть такого, при котором эпифизарная пластинка сохраняется в более или менее неизменном виде, несмотря на постоянную «потерю» клеток в каждой зоне («потеря» связана с тем, что клетки по мере созревания переходят в следующую зону). Зрелые хрящевые клетки, обреченные на гибель и замену костными клетками, выделяют сигнальный белок, под действием которого клетки на внутренней границе зоны пролиферации меняют поведение и начинают формировать хрящ. Тот факт, что сигнал подают сами зрелые клетки, автоматически приводит к равновесию между количеством полностью созревших, готовых погибнуть хрящевых клеток и количеством клеток в зоне пролиферации, которые получают сигнал к превращению в новые хрящевые клетки. Такое равновесие позволяет поддерживать размер зоны формирования хряща по мере ее продвижения в дистальном направлении.

Только что описанная система сигналов чревата одной опасностью: если под действием этих сигналов клетки начнут переходить к формированию хряща слишком быстро, пролиферирующие клетки не будут поспевать за ними, и популяция клеток зоны пролиферации может истощиться. Предотвратить такую ситуацию помогает другой сигнальный белок. Его выделяют клетки, которые только что перестали делиться и перешли к созданию хряща. Этот сигнал распространяется через развивающуюся кость. На него реагируют особые клетки на внешней стороне кости, за эпифизарной пластинкой. Они начинают вырабатывать еще один сигнальный белок.[292] Он распространяется обратно к зоне пролиферации на эпифизарной пластинке и заставляет расположенные там клетки размножаться быстрее (рис. 76).

В результате совместного действия этих двух сигнальных систем одна из которых говорит «созревайте!», а другая «размножайтесь!», к созреванию приступает именно столько клеток, сколько нужно для замены погибающих, а число клеток, вступивших на путь созревания, точно компенсируется за счет пролиферации. Таким образом, система в целом остается стабильной.

Основным внешним регулятором роста костей является уже рассмотренная нами система «гормон роста – ИФР-I». Далее в этой главе я буду для простоты называть ее просто «гормоном роста». По-видимому, гормон роста меняет уровень пролиферации и, таким образом, действует сообща с внутренними сигналами эпифизарной пластинки, регулирует количество клеток, которое можно потратить на формирование хряща. Влияния гормона роста недостаточно, чтобы отменить способность эпифизарной пластинки к самоорганизации, поэтому ее структура остается постоянной, независимо от того, медленно или быстро растет человек. Предположительно, эпифизарные пластинки костей различных типов (бедренной кости, костей пальцев и т. д.) обладают разной чувствительностью к гормону роста. Поэтому они растут с разной скоростью, и образуются кости с характерными относительными пропорциями. Заметим, что какая бы система не отвечала за этот процесс, она должна легко перестраиваться, учитывая большое разнообразие пропорций костей у разных обезьян и человека.


Рис. 76. По мере роста эпифизарной пластинки ее структура остается постоянной за счет различных сигналов. Некоторые из этих сигналов внутренние, а некоторые «ретранслируются» через промежуточную станцию в надкостнице