Оставшиеся клетки внутренней клеточной массы делятся на два слоя. Клетки, непосредственно прилегающие к гипобласту, остаются на месте и образуют новый слой – эпибласт. Клетки вышележащего слоя отслаиваются от эпибласта, и в результате формируется еще одна полость. Она называется амниотической полостью (см. рис. 8). Двухслойный диск, состоящий из эпибласта и гипобласта, зажат между полостью желточного мешка и амниотической полостью, как перемычка в греческой букве тета (θ). Эпибласт, слой, обращеннный к полости желточного мешка, даст начало всем клеткам будущего ребенка.[34],[35]
Рис. 8. Эмбрион снова проделывает «трюк со свободной поверхностью», чтобы получить из граничащего с жидкостью слоя клеток внутренней клеточной массы новый тип клеток – гипобласт. Слой оставшейся внутренней клеточной массы, соприкасающийся с гипобластом, снова дифференцируется, образуя эпибласт. Благодаря этому слой вышележащих клеток отделяется, образуя новую полость. Эпибласт – невзрачный клеточный диск – даст начало будущему младенцу; все остальное пойдет на образование тканей, необходимых для поддержания жизни плода в матке
События, описанные в этой главе, в основном вели к нарушению единообразия и появлению различий между ранее идентичными клетками. На ранней стадии развития эмбрион несколько раз использует один и тот же трюк – дальнейшая судьба клеток зависит от наличия или отсутствия у них свободной поверхности. Это позволяет использовать чистую геометрию в качестве источника новой информации. В каждом случае сугубо локальные взаимодействия приводят к масштабным изменениям. При этом ни одна клетка не «руководит процессом» и не «видит» его общей картины. С появлением разных типов тканей эмбриону будет значительно легче создавать дальнейшие различия. Например, новый тип клеток – С – может развиваться в местах контакта клеток типов А и B. Таким образом, сформируются две новые зоны контакта (АС и СВ), и каждая из них будет служить основой для спецификации следующих типов клеток. На более поздних стадиях развития «эпоху внешних воздействий» (например, использование свободных поверхностей) сменяют механизмы, основанные на внутренних различиях. Первый из них и, возможно, наиболее примечательный станет следующей темой для обсуждения.
Глава 4Закладка плана строения
Самый важный момент в вашей жизни – не рождение, не свадьба или смерть, а гаструляция.
Что видят люди, оглядываясь на прожитые годы? Долгие периоды однообразной жизни, перемежаемые всплесками резких изменений. Возможно, эти изменения являются результатом долгой и тщательной подготовки, занимающей месяцы или годы, но эта подготовка скрыта от глаз. Лепет ребенка перерастает в нечто более осмысленное почти незаметно для родителей, но они никогда не забудут его первое слово. Постепенно складываются и отношения семейной пары: сначала возникает привязанность, затем растет доверие, возникает взаимопонимание, и, наконец, они осознают, как много значат друг для друга. Накопление профессиональных навыков гораздо менее очевидно, чем новая работа или продвижение по карьерной лестнице, которое мы получаем в награду. Гораздо менее приятный пример – постепенное накопление повреждений на клеточном уровне, незаметно подводящее к рубежу, когда можно установить точный диагноз и здоровый человек становится больным.
Такое чередование рутинных событий со скачкообразными изменениями свойственно не только жизни взрослого человека, но и жизни эмбриона. На ранних этапах развития эмбриона, описанных в предыдущих двух главах, происходило всего лишь простое деление клеток. Затем – на первый взгляд, внезапно – начались новые процессы, связанные с формированием клеточных слоев, заметно отличающихся друг от друга. Получившаяся в результате структура – по сути, наполненная жидкостью сфера, которая разделена на две камеры парой дисков (рис. 9), – по-прежнему далека от того, чтобы в ней можно было опознать что-то человекоподобное. Скажите кому-нибудь, что из этой пары дисков получится животное, и он, вероятно, предположит, что это будет медуза. По крайней мере, ее колокол, как и диски эмбриона, радиально симметричен, и у нее есть верх и низ, но нет оси, разделяющей тело на половинки (см. рис. 9). Тем не менее эмбрион уже успел подготовиться к масштабной реорганизации, после которой он уже будет напоминать человека. Этот процесс, занимающий всего пару дней, называется гаструляция.
Рис. 9. Простая радиальная симметрия зародышевого диска человеческого эмбриона в сравнении с аналогичной симметрией медузы
Чтобы подойти к теме гаструляции, можно было бы сначала рассмотреть строение примитивного организма, который образуется в результате данного процесса, а затем посмотреть, какой вклад в его образование вносит каждый этап гаструляции. Это, пожалуй, был бы самый рациональный и простой подход к описанию гаструляции, однако он может создать ложное впечатление о том, что клетки имеют какое-то представление об анатомии организма, в строительстве которого участвуют. На самом же деле развитие организма основано вовсе не на том, что клеткам известны законы развития (понять эти законы трудно даже нам, с нашим мозгом из миллионов клеток), а на том, что клетки автоматически откликаются на изменения окружающей их среды. Поэтому в этой главе мы, следуя логике развития, сначала рассмотрим поведение клеток развивающегося организма и только потом посмотрим, к чему оно приводит.
Прежде чем начать рассказ, хочу сделать важное предупреждение: изучать процесс гаструляции у человека крайне сложно, поэтому почти все, что описано в этой главе, основано на исследованиях животных. Существуют строгие правовые ограничения относительно выращивания человеческих эмбрионов в лабораторных условиях, и изучать эмбрионы на стадии гаструляции нельзя (почему – я расскажу чуть позже). Основная последовательность анатомических изменений человеческого эмбриона известна. Эти данные были получены в исследованиях немногочисленных (и очень ценных) эмбрионов, извлеченных при посмертном вскрытии или при удалении матки у женщин, которые чаще всего даже не знали о том, что беременны. Гаструляция начинается примерно через пятнадцать дней после оплодотворения, то есть примерно тогда, когда женщина ожидает начала менструации. Некоторым из этих эмбрионов более ста лет, но они до сих пор хранятся в музеях под особым присмотром, потому что новый материал такого рода поступает крайне редко. Исследования проводятся главным образом на мышах и курицах, а процесс гаструляции у этих животных значительно отличается от гаструляции у человека. Цыпленок развивается в яйце, а не в матке; эпибласт и гипобласт мыши имеют форму чаши, а не диска. Эти особенности могут играть существенную роль при развитии. Поэтому реконструировать механизмы гаструляции человека на основе данных, полученных при изучении модельных животных, рискованно – слишком мало у нас информации, и мы можем неверно интерпретировать какие-либо детали процесса.
Отправной точкой для гаструляции является эмбрион в том состоянии, в котором мы оставили его в конце главы 3. К этому времени уже сформировался ряд вспомогательных тканей, таких как плацента, а также два заполненных жидкостью внутренних пространства: амниотическая полость и желточный мешок. Между этими полостями лежат два диска, расположенные один над другим: гипобласт и эпибласт. Из гипобласта образуются дополнительные вспомогательные ткани, а из эпибласта – сам плод. Ни один из этих двух дисков не имеет каких-либо явных особенностей, которые позволяли бы отличить один его край от другого (см. рис. 9).
Первое изменение (судя по данным, полученным на животных) происходит в гипобласте. У клеток, расположенных в середине этого диска,[36] включаются новые гены, в том числе и ген ДНК-связывающего белка, который называется HEX.[37] Что является сигналом к этому изменению, пока неясно. Возможно, что все клетки гипобласта изначально готовы к нему, но большинство из них ингибируется сигнальным белком, который синтезируется тканями, окружающими гипобласт.[38] Достаточно далеко от источника этого ингибитора находятся только клетки в центре диска, поэтому они могут избежать его влияния и запустить экспрессию гена HEX. Этот механизм – только предположение, но активация гена HEX – факт. Клетки, в которых экспрессируется HEX, уходят из центра диска – они перемещаются, расталкивая соседние клетки, и собираются в одной точке на краю диска гипобласта[39],[40],[41] (рис. 10). Все еще непонятно, даже в случае мышей, что же особенного в этой точке диска, что клетки мигрируют именно туда. У «низших» животных расположение похожей «особой» точки обусловлено начальными условиями развития. В некоторых случаях положение этой точки определяется переходящей к зародышу асимметрией распределения молекул, заложенных в яйцеклетку материнским организмом. В других случаях в этой точке располагаются полярные тельца, «побочные продукты» клеточных делений, предшествующих формированию яйцеклетки. У некоторых организмов эту точку, по-видимому, маркирует место проникновения сперматозоида. Весьма вероятно, что у млекопитающих это тоже так, и есть указания на то, что эмбрионы мышей асимметричны уже на самых ранних стадиях развития.[42] Соответствующих данных по эмбрионам людей, разумеется, нет. Это очень досадно, потому что скопление в одном месте клеток, у которых экспрессируется HEX, приводит к исключительно важному результату – одно конкретное место на краю диска гипобласта становится не таким, как другие. Иными словами, это первый шаг в сторону от простой радиальной си