Опасная идея Дарвина: Эволюция и смысл жизни — страница 9 из 29

ДАРВИНОВСКАЯ МЫСЛЬ В БИОЛОГИИ

Эволюция – это переход от никаковой всесхожести, о которой невозможно говорить, к постоянному друг-за-друга-держанию и еще-чего-нибудьству.

Уильям Джеймс186


Биология осмысленна лишь в свете эволюции.

Феодосий Добржанский187

Глава седьмаяЗАПУСК ДАРВИНОВСКОГО ДВИГАТЕЛЯ

1. Задолго до Дарвина

И сказал Бог: да произрастит земля зелень, траву, сеющую семя, и дерево плодовитое, приносящее по роду своему плод, в котором семя его на земле. И стало так.

И произвела земля зелень, траву, сеющую семя по роду ее, и дерево, приносящее плод, в котором семя его по роду его. И увидел Бог, что это хорошо.

Бытие 1: 11–12

Из какого семени могло произрасти Древо Жизни? Теперь уже не вызывает обоснованных сомнений тот факт, что вся жизнь на Земле появилась в результате такого разветвляющегося процесса порождения и развития. В значительной степени благодаря Дарвину это – научный факт столь же очевидный, как и то, что Земля – круглая. Но что же запустило сам процесс? Как мы увидели в третьей главе, Дарвин не только начал с середины; в своих опубликованных трудах он осторожно воздерживался от высказываний о начале – возникновении жизни и его предпосылках. В частной переписке он был чуть более откровенен. В знаменитом письме он высказывал предположение, что жизнь, вполне возможно, зародилась в «теплом маленьком пруду», но не уточнял, каким мог бы быть рецепт этого первобытного доорганического бульона. А, отвечая Эйсе Грею, он, как мы видели188, счел вполне возможным, что законы, приведшие к этому поразительному переходу, были сами созданы – предположительно, Богом.

Сдержанность, проявленная Дарвином в этом вопросе, представляется благоразумной по нескольким причинам. Во-первых, никто лучше него не знал, как важно укоренить революционную теорию в почве эмпирических фактов; он знал, что может лишь рассуждать и что при жизни у него мало надежд получить сколь-нибудь существенное подтверждение. В конце концов, как мы уже видели, он не знал даже о менделевском понятии гена, не говоря уже об обеспечивающих его действие молекулярных механизмах. Дарвин был бесстрашен в своих выводах, но также понимал, что ему не хватает посылок, чтобы продолжать их делать. Кроме того, он беспокоился о любимой жене, Эмме, которая отчаянно цеплялась за свои религиозные убеждения и уже могла различить опасность, таившуюся в работах ее мужа. Однако его нежелание продвигаться дальше вглубь опасной территории (по крайней мере, в публичной дискуссии) было чем-то большим, чем просто опасением задеть ее чувства. Речь шла о более глобальных этических проблемах, и Дарвин, безусловно, это понимал.

Немало было написано о моральных дилеммах, встающих перед учеными, открывшими потенциально опасный факт и вынужденными выбирать между любовью к истине и заботой о благополучии других людей. Существуют ли какие-либо условия, при которых они обязаны скрыть правду? Это может быть настоящей дилеммой, когда в пользу обеих сторон можно привести веские и отнюдь не поверхностные доводы. Но не может быть двух мнений о том, каков моральный долг философов и ученых в отношении их размышлений. Прогресс в науке редко достигается простым методичным нагромождением фактов, которые можно доказать; «передний край» ее почти всегда – несколько соперничающих «линий фронта», представляющих собой дерзкие умозрительные построения и находящихся в состоянии жесткой конкуренции. Вскоре оказывается, что многие из этих умозрительных конструкций несостоятельны, сколь бы убедительными они ни казались поначалу; эти неизбежные побочные продукты научно-исследовательской деятельности следует считать потенциально не менее опасными, чем лабораторные отходы. Следует учитывать их воздействие на окружающую среду. Если их неправильная интерпретация в публичном дискурсе может привести к страданиям (склоняя заблуждающихся людей к опасному поведению или подрывая их приверженность к какому-либо социально желательному принципу или символу веры), ученым следует действовать особенно осторожно, тщательно подчеркивать, что догадка является именно догадкой, и использовать риторику убеждения лишь там, где это необходимо.

Но, в отличие от ядовитых испарений или химического осадка, идеи практически невозможно поместить в карантин, в особенности когда они касаются тем, неизбежно вызывающих у людей интерес. А потому, хотя все согласны с существованием принципа ответственности, и в прошлом, и сейчас не утихают споры о том, как его следует соблюдать. Дарвин сделал все, что было в его силах: он практически ни с кем не делился своими размышлениями.

Мы способны сделать больше. В настоящий момент физика и химия жизни известны в ослепительных подробностях, а потому можно гораздо лучше судить о необходимых и (возможно) достаточных условиях возникновения жизни. Ответы на важные вопросы все еще неизбежно нуждаются в большом количестве умозрительных конструкций, но можно оговорить, что представляют собой догадки и что могло бы их подтвердить или опровергнуть. Больше не нужно будет придерживаться избранной Дарвином политики умолчания; слишком много любопытнейших тайн уже раскрыто. Возможно, мы еще не понимаем, как именно серьезно подойти ко всем этим идеям, но благодаря Дарвину, укрепившему плацдарм в области биологии, ясно, что это возможно и должно быть сделано.

Нет ничего удивительного в том, что Дарвин не обнаружил рабочий механизм передачи наследственной информации. Что бы, по-вашему, он подумал об идее, будто в ядре каждой из клеток его тела содержится копия набора инструкций, записанных в огромных макромолекулах в форме двойных туго свернутых спиралей, формирующих набор из сорока шести хромосом? Если развернуть и соединить друг с другом содержащиеся в вашем теле молекулы ДНК, то они несколько раз (десять или сто) дотянутся до Солнца и обратно. Разумеется, Дарвин – это человек, приложивший великие усилия к открытию массы поразительных и сложных фактов о жизненном цикле и устройстве организма морских уточек, орхидей и дождевых червей и описывавший их с очевидным интересом. Если бы в 1859 году Дарвину привиделся вещий сон о чудесах ДНК, он, без сомнения, получил бы удовольствие, но сомневаюсь, что смог бы с полной серьезностью его кому-нибудь пересказать. Даже нам, привыкшим к «техническим чудесам» эпохи компьютеризации, сложно усвоить эти факты. Речь идет не только о копировальных аппаратах размером с молекулу, но и об энзимах-редакторах, исправляющих ошибки, – и все это молниеносно и в таких масштабах, с которыми не потягаться и суперкомпьютерам. «Биологические макромолекулы обладают емкостью памяти, на несколько порядков превосходящей лучшие из существующих на сегодняшний день хранилищ информации. Например, плотность информации в геноме E. coli составляет приблизительно 1027 битов на м3»189.

В пятой главе мы пришли к дарвиновскому определению биологической возможности через доступность объекта в Библиотеке Менделя, но, как было отмечено, условием существования подобной библиотеки является наличие поразительно сложных и эффективных генетических механизмов. Уильяма Пейли существующие на атомном уровне хитросплетения, делающие саму жизнь возможной, привели бы в восторг и благоговение. Как могли они возникнуть, если сами являются предпосылкой дарвиновской эволюции?

Те, кто относится к эволюции скептически, утверждают, что это является роковой ошибкой дарвинизма. Как мы видели, своей убедительностью дарвиновская идея обязана тому, как она распределяет ту огромную задачу воплощения Замысла на Чрезвычайно продолжительный период времени и протяженность пространства, при том сохраняя в процессе промежуточные результаты. В книге «Эволюция: Теория в кризисе» Майкл Дентон формулирует это так: сторонник дарвинизма полагает, «что острова функциональности – это нечто обычное и, прежде всего, легко находимое и что от острова к острову легко добраться благодаря функциональным посредникам»190. Это практически верно, но верно не совсем. В самом деле, основной тезис дарвинизма состоит в том, что Древо Жизни раскинуло ветви, соединяя «острова функций» с перешейками промежуточных случаев, но никто не говорил, что переход будет «прост» или что безопасные стоянки – дело «обычное». Лишь в одном, весьма строгом смысле слова «легко» эти переходы по перешейкам представляются легким с точки зрения дарвинизма делом: поскольку каждый живой организм является потомком другого живого организма, у него есть замечательный посох; за исключением крошечных деталей, он с гарантией обладает проверенной временем жизнеспособностью. Родственные связи – подлинные линии жизни; в дарвинизме единственная надежда войти в космический лабиринт отбросов и выйти оттуда живым – оставаться на перешейках.


Ил. 11. Происхождение жизни. 3 562 398 027 лет назад: две аминокислоты сблизились. – 6 секунд спустя: они отдалились друг от друга. – 482 674 115 лет спустя: две аминокислоты сблизились


Но как этот процесс мог начаться? Дентон191 довольно много места отводит расчетам, доказывающим неправдоподобность такого происхождения жизни, и в итоге получает вполне подходящее для его целей огорошивающе громадное число:

Чтобы в результате случайного стечения обстоятельств получить клетку, потребуется, чтобы в одном месте одновременно оказалась по меньшей мере сотня функциональных белков. Это – сотня одновременно происходящих событий, вероятность каждого из которых вряд ли больше, чем 10-20, что дает максимальную совместную вероятность 10-2000.

Такая вероятность и в самом деле Исчезающе мала – событие практически невозможно. И на первый взгляд кажется, будто обычный ответ дарвинизма на этот вызов не может помочь нам логически, поскольку само условие его успеха – система воспроизведения с изменением – является именно тем, что лишь ее успех позволит нам объяснить. Кажется, что эволюционная теория загнала себя в тупик, из которого нет выхода. Очевидно, что спасти ее может лишь небесный крюк! Именно на это тщетно надеялся Эйса Грей, и чем больше мы узнаем о сложностях репликации ДНК, тем заманчивее кажется эта идея тем, кто ищет место, где науку можно спасти при незначительном содействии религии. Можно сказать, что многим это затруднение кажется даром Божьим. Забудьте об этом, говорит Ричард Докинз:

Возможно, говорят они, Создатель и не следит изо дня в день за ходом эволюционных событий; возможно, он не проектировал ни волка, ни ягненка, не создавал деревьев, но он должен был наделить репликаторы властью, соорудив самый первый аппарат для репликации – ту исходную систему из ДНК и белков, которая делает возможным процесс накапливающего отбора – а следовательно, и эволюцию.

Аргумент этот откровенно беспомощен, причем нетрудно увидеть, что он сам себя же и опровергает. Организованная сложность – вот то, с объяснением чего у нас имеется затруднение. Если бы только мы могли постулировать без доказательств существование организованной сложности, пусть даже всего лишь белковой машины для репликации ДНК, то объяснить с ее помощью возникновение еще более сложных объектов нам было бы относительно легко… Но разумеется, Творец, способный выдумать нечто столь сложное, как белковый аппарат репликации ДНК, должен быть сам как минимум не менее сложен192.

Как продолжает Докинз193, «теория эволюции только потому и хороша, что она может объяснить возникновение упорядоченной сложности из первозданной простоты». Это – одно из ключевых достоинств идеи Дарвина и ключевых слабостей ее альтернатив. Вообще-то, однажды я написал, что какая-либо иная теория вряд ли сможет похвастаться этим преимуществом:

Дарвин объясняет мир целевых причин и телеологических законов при помощи принципа, который, несомненно, механистичен, но – что более существенно – совершенно независим от «смысла» и «цели». Он предполагает, что мир абсурден в том смысле, который вкладывают в это слово экзистенциалисты: не нелеп, но бесцелен, – и это предположение является необходимым условием любого бесспорного определения цели. Сомнительно, чтобы мы могли представить себе не механистический, но при этом не подразумевающий спорных теоретических допущений принцип объяснения замысла в биологическом мире; соблазнительно считать приверженность таким объяснительным принципам равносильной приверженности механистическому материализму, но ясно, что именно следует предпочесть… Кто-то скажет, что материалистическая теория Дарвина может быть не единственной не вызывающей вопросов теорией, объясняющей эти процессы, но она – именно такая теория, и она – единственная найденная нами такая теория, и это дает вполне достаточные основания для того, чтобы поддержать материализм194.

Является ли это честной или хотя бы уместной критикой религиозных альтернатив? Один из читателей черновика этой главы здесь запротестовал, говоря, что, рассматривая гипотезу о Боге как лишь одну из научных гипотез, которую следует оценивать в соответствии с научными стандартами в частности и правилами рационального мышления в целом, мы с Докинзом игнорируем широко распространенное среди верующих убеждение, будто их вера превышает разум, и к ней невозможно применить такие светские методы исследования. С моей стороны – заявил он – само предположение, будто научный метод может в полную силу применяться в сфере религиозной веры, является не просто неуместным, но и необоснованным.

Ну что ж, давайте обдумаем это возражение. Сомневаюсь, что после тщательного рассмотрения защитник религии сочтет его привлекательным. Однажды философ Рональд де Соуза весьма выразительно охарактеризовал философскую теологию как «игру в интеллектуальный теннис без сетки», и я с готовностью допускаю, что до сих пор без всяких вопросов и оговорок полагал, будто сетка рационального суждения натянута. Но, если вам действительно так угодно, можно ее опустить. Подавайте! И, какой бы ни была ваша подача, предположим, что я отвечу на нее примерно так: «Сказанное вами означает, что Бог – это бутерброд с ветчиной в обертке из фольги. Стоит ли такому Богу поклоняться?» Если же вы отобьете мяч, потребовав объяснения, как я могу логически обосновать заявление, что из вашей подачи можно сделать такой нелепый вывод, я отвечу: «Так что же, вы хотите, чтобы сетка была натянута, только когда приходит время мне бить по мячу? Но сетка либо есть, либо ее нет. Если ее нет, то нет и правил, и каждый волен говорить что угодно, и игры глупее не выдумать. Я исходил из предположения, что на игру без сетки не стоит тратить ни ваше время, ни мое».

А если вы желаете размышлять о вере и предлагаете обоснованные (и поддающиеся рациональному осмыслению) аргументы в защиту веры, понимаемой как еще одна категория убеждений, достойная особого обсуждения, – я готов вступить в игру. Разумеется, я допускаю существование такого явления, как вера; что мне хочется увидеть, так это правомерные основания, позволяющие всерьез рассматривать веру как способ достижения истины, а не, скажем, всего лишь способ, которым люди утешают себя и друг друга (вполне достойная задача, к решению которой я как раз отношусь серьезно). Но вам не следует ожидать от меня согласия с вашими доводами в пользу веры как пути к истине, если какой-то из них отсылает к тому самому божьему промыслу, который вы, предположительно, пытаетесь обосновать. Прежде чем взывать к вере, когда разум загнал вас в угол, подумайте, в самом ли деле вы хотите отбросить его, когда он на вашей стороне. Вы с любимым человеком осматриваете достопримечательности чужой страны, и вашу любовь жестоко убивают у вас на глазах. На суде оказывается, что в этой стране защита может вызывать друзей обвиняемого, чтобы те под присягой засвидетельствовали, что верят в его невиновность. Вы созерцаете вереницу этих друзей: в слезах и, очевидно, вполне искренне они гордо заявляют о своей непоколебимой вере в невиновность того, кто прямо перед вами совершил ужасное деяние. Судья слушает внимательно и со всем уважением, и, вне сомнения, эти излияния трогают его гораздо сильнее, чем все доказательства, представленные обвинением. Разве это не кошмар? Захотите ли вы жить в такой стране? Или, может быть, вы захотите, чтобы вас оперировал хирург, признающийся, что стоит в его голове зазвучать голоску, побуждающему пренебречь медицинскими знаниями, – и он его слушается? Я знаю, что в порядочном обществе не принято требовать от людей придерживаться определенного мнения, и в большинстве случаев полностью согласен с тем, как замечательно все это устроено. Но сейчас мы серьезно стремимся докопаться до правды, и если вы полагаете, что этот повсеместный, но негласный консенсус по вопросу о вере представляет собой нечто большее, чем общественно полезное помрачение сознания, позволяющее избежать обоюдной неловкости и унизительных ситуаций, то вы либо разобрались в данном вопросе гораздо лучше любого из когда-либо живших на свете философов (ибо убедительно защитить эту точку зрения никому и никогда не удавалось), либо сами себя обманываете. (Мяч ваш. Отбивайте.)

Отповедь, данная Докинзом теоретику, призывающему Бога, чтобы запустить процесс эволюции, представляет неопровержимое возражение, которое сегодня не менее разрушительно, чем два века назад, когда Филон использовал его в юмовских «Диалогах», чтобы разгромить Клеанта. В самом лучшем случае небесный крюк всего лишь позволил бы отложить решение проблемы, но Юм не смог придумать никакого подъемного крана, и ему пришлось отступить. Дарвин спроектировал ряд великолепных кранов, позволяющих поднимать груз с определенной высоты, но можно ли вновь применить некогда так хорошо сработавшие принципы, чтобы выполнить работу, позволившую оторвать его подъемные краны от земли? Да. Именно тогда, когда может показаться, что идея Дарвина исчерпала свои ресурсы, она легко соскакивает на уровень ниже и продолжает работать – не просто одна идея, а множество, и число растет, как число прутьев у метлы ученика колдуна.

Если вам хочется разобраться, в чем тут фокус, на первый взгляд кажущийся невообразимым, нужно вступить в схватку с некоторыми непростыми концепциями, множеством мелких фактов из области как математики, так и молекулярной биологии. Это не та книга, и я – не тот автор, у которого можно об этих фактах узнать, а ничто другое не заложит подлинно прочное основание вашего понимания, так что перед тем, как продолжить, я должен предупредить: хотя я и постараюсь познакомить вас с этими концепциями, вы не узнаете их по-настоящему, не изучив посвященную им специальную литературу. (Сам я их понимаю на любительском уровне.) В настоящее время такое множество разных исследователей занято хитроумными теоретическими и экспериментальными изысканиями, что на границе биологии и физики практически возник особый раздел науки. Поскольку я не могу надеяться продемонстрировать вам ценность этих идей (и вам не стоило бы мне верить, пообещай я это), то зачем их излагать? Затем, что моя цель – философская: я желаю разрушить предрассудок, убеждение, будто теория определенного рода никак не может работать. Мы видели, как Юму пришлось сойти со своей философской траектории потому, что он не смог серьезно подойти к исследованию смутно различенного им пролома в стене. Он думал, что знает, что любое движение в этом направлении бессмысленно, а, как без устали повторял Сократ, думать, что что-то знаешь, когда на деле не знаешь ничего, – прямая дорога к философскому параличу. Если я смогу показать, что движение «до самого конца» в случае идеи Дарвина мыслимо, то множество слишком хорошо нам знакомых легких способов отвергнуть ее лишится силы и нам откроются другие альтернативы.

2. Молекулярная эволюция

Мельчайшие каталитически активные молекулы белка в живых клетках состоят из по меньшей мере сотни аминокислот. Даже для такой короткой молекулы существует 20100≈10130 разнообразных сочетаний двадцати основных мономеров. Это показывает, что уже на самом нижнем уровне сложности, на уровне биологических макромолекул, возможно почти безграничное разнообразие структур.

Бернд-Олаф Кюпперс195


Наша задача – отыскать алгоритм, закон природы, который приведет к возникновению информации.

Манфред Эйген196

Говоря в предыдущем разделе об убедительности основного тезиса дарвинизма, я позволил себе крошечное (!) преувеличение: я сказал, что каждое живое существо является потомком живого существа. Это утверждение не может быть правдой, ибо предполагает бесконечную вереницу живых существ, ряд без первого элемента. Поскольку мы знаем, что полное число живых существ (существовавших на Земле вплоть до этого момента) является большим, но конечным, то логика требует указать на первый элемент – если хотите, Адама Протобактериального. Но как может появиться на свет этот первый элемент? Целая бактерия слишком, слишком сложна, чтобы возникнуть в результате космической случайности. ДНК такой бактерии, как E. coli, состоит из примерно четырех миллионов нуклеотидов, и почти все они расположены в строгом порядке. Более того, вполне очевидно, что, если значительно упростить ее устройство, бактерия не сможет существовать. Мы оказываемся перед затруднением: поскольку живые организмы существовали лишь ограниченный период времени, должен быть первый такой организм; но, поскольку все живые организмы сложны, первого быть не может!

Возможно лишь одно решение, и мы хорошо представляем себе, какое: перед появлением бактерий с автономным обменом веществ существовали гораздо более простые организмы, похожие на вирусы; но, в отличие от вирусов, у них не было (пока) каких-либо хозяев, на которых можно бы было паразитировать. С точки зрения химика, вирусы – «всего лишь» огромные, сложные кристаллы, которые благодаря своей сложности не остаются на своих местах – они «нечто делают». В частности, они воспроизводятся и самокопируются, претерпевая изменения. Вирус путешествует налегке, в его багаже нет аппарата, обеспечивающего обмен веществ, так что он либо случайно набредает на запасы энергии и материалов, необходимых для самокопирования и самовосстановления, либо в конце концов подчиняется Второму закону термодинамики и распадается. Сегодня живые клетки служат хранилищами запасов для вирусов, которые эволюционировали так, чтобы ими пользоваться, но в давние времена вирусам приходилось выкручиваться, прибегая к менее эффективным методам, чтобы копировать себя. В наши дни не у всех вирусов двуспиральная ДНК; некоторые используют язык своих предков и состоят из односпиральной РНК (которая, разумеется, продолжает участвовать в нашем размножении – играет роль системы-посредника, передающей информацию в процессе «экспрессии»). Если мы будем следовать общепринятой практике и называть вирусами паразитические макромолекулы, то для их предков понадобится какой-то особый термин. Инженеры-программисты называют скомпонованные фрагменты кодированных команд, выполняющие конкретную задачу, «макросами», а потому я предлагаю называть макросами этих предшественников современных вирусов, чтобы подчеркнуть, что, хотя они представляют собой «всего лишь» огромные макромолекулы, они также являются элементами программы или алгоритма, простейшими, элементарными самовоспроизводящимися механизмами, удивительно похожими на недавно возникшие удивительные и зловредные компьютерные вирусы197. Поскольку эти макросы-первопроходцы воспроизводятся, они удовлетворяют необходимым дарвиновским условиям эволюции, и сейчас уже стало ясно, что они почти миллиард лет существовали на Земле до появления каких-либо иных живых организмов.

Однако даже наиболее простой из воспроизводящихся макросов далеко не прост: он состоит из тысяч – или миллионов – частей в зависимости от того, как вести учет исходных материалов. Буквы алфавита – аденин, цитозин, гуанин, тимин и урацил – элементы не настолько сложные, чтобы они не могли возникнуть в нормальных условиях добиологического периода. (В появившейся прежде ДНК молекуле РНК место тимина занимает урацил.) Однако специалисты не пришли к единому мнению по вопросу о том, могут ли в результате ряда совпадений эти составляющие синтезироваться в нечто столь сложное, как самовоспроизводящаяся молекула. Химик Грэм Кэрнс-Смит198 формулирует новую версию аргумента Пейли для явлений молекулярного уровня: процесс синтезирования фрагментов ДНК очень сложен даже при использовании передовых методов современной органической химии; это доказывает, что их случайное появление так же маловероятно, как и в случае сборки часов бурей Пейли. «Нуклеотиды слишком дорого обходятся»199. Для появления ДНК требуется выполнить слишком много проектно-конструкторских работ, чтобы она могла возникнуть случайно, – настаивает Кэрнс-Смит, продолжая блестящий (хотя и умозрительный и спорный) рассказ о том, как все эти работы могли бы быть выполнены. Подтверждается теория Кэрнса-Смита в конечном итоге или опровергается, о ней, несомненно, стоит упомянуть просто потому, что она служит прекрасной иллюстрацией фундаментальной дарвиновской стратегии200.

Последовательный дарвинист, вновь столкнувшись с проблемой поиска иголки в стоге сена Пространства Замысла, начал бы искать еще более простую форму репликатора, которая могла бы каким-то образом выступить в качестве временных лесов, способных удерживать вместе части белков или основания нуклеотидов, пока молекула белка или макрос не будет собрана полностью. Поразительно, но на это место есть кандидат, обладающий как раз необходимыми качествами, и еще поразительнее, что это ровно то, о чем говорится в Библии: глина! Кэрнс-Смит показывает, что в дополнение к углеродным самовоспроизводящимся кристаллам ДНК и РНК существуют также гораздо более простые (он называет их «низкотехнологичными») кремниевые самовоспроизводящиеся кристаллы, и эти так называемые силикаты сами могут быть результатом процесса эволюции. Из них формируются ультратонкие частицы глины (глины такого рода слагают ложе бурных, с сильным течением малых рек), и отдельные кристаллы несколько отличаются друг от друга на уровне молекулярной структуры, причем эти отличия могут быть «переданы по наследству», когда запускаются процессы кристаллизации, ведущие к их самовоспроизведению.

Кэрнс-Смит формулирует сложные аргументы, чтобы показать, как фрагменты белка и РНК, которые естественным образом облепляют поверхность этих кристаллов словно множество блох, могут в конце концов быть использованы силикатными кристаллами в качестве «орудий», облегчающих процесс репликации. Согласно этой гипотезе (которая подобно всем по-настоящему плодотворным идеям имеет множество вариаций, любая из которых может в конечном счете победить), элементы, из которых слагаются живые организмы, начали путь как своего рода квазипаразиты, липнувшие к самовоспроизводящимся частицам глины и становившиеся все сложнее, чтобы иметь возможность удовлетворять «потребности» этих частиц; в конечном счете они достигли той стадии развития, на которой уже могли сами о себе позаботиться. Никакого небесного крюка – лишь лестница, которую можно отбросить, – как сказал в иных обстоятельствах Витгенштейн, – когда подъем завершен.

Но даже если все так и обстоит, история далека от завершения. Предположим, что короткие самовоспроизводящиеся спирали РНК появились в результате такого низкотехнологичного процесса. Кэрнс-Смит называет подобные полностью замкнутые на себя репликаторы «голыми генами», ибо они не предназначены ни для чего, кроме самовоспроизведения, происходящего без всякой внешней помощи. Перед нами все еще стоит сложный вопрос: как одеть эти голые гены? Как эти эгоистические самовоспроизводящиеся сущности смогут когда-нибудь начать кодировать конкретные белки, крохотные механизмы-энзимы, из которых слагаются большие комплексы, передающие современные гены от организма к организму? Но вопрос еще сложнее, ибо эти белки не просто формируют комплексы; как только спираль РНК или ДНК приобретает достаточную длину, они становятся необходимы для самого процесса самовоспроизводства. Хотя короткие цепи РНК могут реплицироваться без помощи энзимов, более длинные нуждаются в свите помощников, и чтобы кодировать их, нужна очень длинная последовательность – длиннее той, что может быть воспроизведена с достаточной точностью до появления этих же самых энзимов. Кажется, мы вновь столкнулись с парадоксом, порочным кругом, лаконично описанным Джоном Мэйнардом Смитом: «Точная репликация невозможна, если цепочка РНК короче, скажем, 2000 пар нуклеотидов, а без точной репликации подобная длина РНК недостижима»201.

Манфред Эйген является одним из ведущих исследователей этого периода истории эволюции. В своей чудесной книжечке «Шаги на пути к жизни»202 (ее чтение – превосходный способ продолжить изучение этих идей) он показывает, как макросы постепенно создают то, что он называет «молекулярным инструментарием», который живые клетки используют для самовоссоздания, одновременно также выстраивая вокруг себя структуры, которые с ходом времени превращаются в защитные мембраны первых прокариотических клеток. Этот долгий период доклеточной эволюции не оставил ископаемых останков, но зато множество исторических свидетельств о нем сохранилось в «текстах», переданных нам его потомками, включая, разумеется, кишащие вокруг нас сегодня вирусы. Изучая существующие тексты, дошедшие до наших дней, конкретные последовательности A, C, G и T в ДНК высших организмов и A, C, G и U в РНК-геномах, исследователи могут многое узнать о том, как именно выглядели первые самовоспроизводящиеся тексты, используя усовершенствованные версии тех методов, с помощью которых филологи реконструировали слова, написанные самим Платоном. Некоторые последовательности в нашей собственной ДНК являются по-настоящему древними: их даже можно возвести (переведя на более ранний язык РНК) к последовательностям, составленным в давние дни эволюции макросов!

Давайте вернемся к временам, когда основания нуклеотидов (AC, G, T и U) иногда появлялись тут и там в различных количествах: возможно, накапливаясь на некоторых кристаллах глинного минерала Кэрнса-Смита. Двадцать разнообразных аминокислот – кирпичики, из которых слагаются все белки, также с некоторой периодичностью возникают при весьма разнообразных неорганических условиях, так что на их присутствие тоже можно рассчитывать. Более того, Сидней Фокс показал203, что отдельные аминокислоты могут при сгущении образовывать «протеиноиды» – подобные белкам вещества с весьма скромными каталитическими свойствами204. Это – небольшой, но важный шаг вперед, ибо каталитические свойства – способность ускорять химические реакции – важнейший талант любого белка.

А теперь предположим, что некоторые из этих оснований начинают формировать пары: C и G, A и U – и составляют мельчайшие комплементарные последовательности РНК (меньше сотни пар оснований), которые могут неточно воспроизводиться без помощи энзимов. Если вернуться к метафоре Вавилонской библиотеки, то в нашем распоряжении окажется печатный станок и переплетная мастерская, но вот книги будут слишком короткими, чтобы сгодиться на что-нибудь помимо копирования со множеством опечаток. И это не будут книги о чем-то. Может показаться, что мы вернулись ровно к тому, с чего начинали – или даже отступили назад. Спустившись на уровень молекулярных строительных элементов, мы сталкиваемся с инженерной задачей, больше похожей на сборку конструктора, чем постепенную лепку из пластилина. Подчиняясь непреложным законам физики, атомы либо образуют устойчивые сочетания, либо нет.

К счастью для нас – и к счастью для всех живых организмов, – в Чрезвычайно обширном пространстве возможных белков существуют белковые конструкции, которые (если их отыскать) позволяют жизни возникнуть. Как их найти? Нам как-то нужно согнать их вместе с помощью «охотников на белки», фрагментов самовоспроизводящихся цепочек нуклеотидов, которые в конце концов начнут кодировать их в образованных ими макросах. Эйген показывает, как порочный круг преисполнится добродетели, если расширить его, превратив в «гиперцикл», состоящий больше чем из двух элементов205. Это – сложная техническая концепция, но лежащая в ее основании идея достаточно проста: представьте себе условие, при котором фрагменты типа A могут увеличить шансы значительных частей B, которые в свою очередь обеспечивают благополучие порций С, которые – завершим круг – создают условие для воспроизводства большего числа фрагментов А, и так далее во взаимоусиливающем взаимодействии элементов до того момента, когда сможет запуститься весь процесс, создающий среды, обычно обеспечивающие воспроизведение все более и более длинных цепочек генетического материала206.

Но даже если это в принципе возможно, как может начаться гиперцикл? Если допустить, что все возможные белки и все возможные нуклеотидные «тексты» по-настоящему равновероятны, то непонятно, как такой процесс вообще можно запустить. Каким-то образом примитивная и пестрая смесь ингредиентов должна образовать некую структуру, сводя вместе немногих кандидатов, у которых есть «шансы на успех», и тем самым дополнительно повышая эти шансы. Помните соревнования по бросанию монеты из второй главы? Кто-то должен выиграть, но победитель выигрывает не из‐за своих способностей, а просто в силу стечения обстоятельств. Он не больше, не сильнее и не лучше других участников соревнования – и тем не менее он победитель. Кажется, что нечто подобное – с дарвиновским сюжетным поворотом – произошло в ходе добиологической молекулярной эволюции: победители начали в следующем раунде производить больше собственных копий, так что без какого-либо отбора «с указанием мотивов» (как говорят, отсеивая потенциальных присяжных) начинают возникать династии, проявляющие лишь выдающиеся репродуктивные способности. Если начать с совершенно случайных «участников соревнования», выбранных из множества самовоспроизводящихся фрагментов, даже если изначально они неотличимы друг от друга с точки зрения их репродуктивной способности, те, которым выпадет на долю победить в первых раундах, в последующих раундах будут встречаться чаще, заполняя пространство следами в высшей степени похожих друг на друга (коротких) текстов, тем не менее оставляющих Чрезвычайно обширные гиперобъемы пространства абсолютно пустыми и навеки недоступными. Самые первые нити протожизни могут возникать до всяких различий в навыках, становясь той самой действительностью, из которой благодаря состязанию в обладании разнообразными навыками может затем вырасти Древо Жизни. Как пишет об этом коллега Эйгена Бернд-Олаф Кюпперс, «теория предсказывает, что биологические структуры существуют, но не какие именно»207. Этого довольно, чтобы с самого начала в пространстве вероятных событий появилось более чем достаточно фрагментов разнородности.

Итак, некоторые из возможных макросов неизбежно будут более вероятными, чем другие (в Чрезвычайно огромном пространстве возможностей натолкнуться на них больше шансов). Какие именно? «Более приспособленные»? Нет, за исключением тривиального, тавтологического смысла этого выражения – смысла полной (или почти полной) тождественности предшественникам-«победителям», которые в свою очередь обычно практически тождественны «победителям» еще более ранних раундов. (В миллионномерной Библиотеке Менделя последовательности, различающиеся единственным локусом, размещаются бок о бок друг с другом в одном из измерений; расстояние от любого тома до любого другого технически известно как расстояние Хэмминга. Этот процесс распределяет победителей равномерно, через малые отрезки расстояния Хэмминга, от одной исходной точки в любых и всех возможных в Библиотеке направлениях.) Это – наиболее простой из возможных случаев, характеризующихся поговоркой «деньги к деньгам», и, поскольку успех нуклеотидной последовательности определяется не чем иным, как только ею самой и тем, что она похожа на своего «родителя», перед нами чисто синтаксическое определение приспособленности в противоположность ее семантическому определению208. То есть для определения степени приспособленности нуклеотидной последовательности не нужно размышлять, что она означает. В шестой главе мы видели, что простая опечатка всегда может объяснить нуждающийся в объяснении Замысел не более, чем вы можете объяснить разницу в качестве двух книг, сопоставив сравнительную частоту, с которой в них используются буквы алфавита, но прежде чем появятся осмысленные самовоспроизводящиеся коды, которые сделают это возможным, нам понадобятся самовоспроизводящиеся коды, лишенные всякого значения; их единственная функция – воспроизводить самих себя. Как говорит об этом Эйген, «структурная стабильность молекулы не имеет отношения к переносимой ею семантической информации, которая остается невыраженной до самого появления результата трансляции»209.

Это – момент появления наиболее яркого примера феномена QWERTY, но, как и в случае давшего ему имя культурного явления, пример этот даже изначально не был полностью лишен смысла. Как мы только что видели, совершенная равновероятность могла в результате случайного процесса превратиться в монополию, но в природе сложно найти случай совершенной равновероятности, и на самых первых стадиях этого процесса порождения текста существовала некая разнородность. Из четырех оснований (AC, G и T) наиболее структурно устойчивыми являются G и C: «Расчет необходимой энергии связи, а также эксперименты по связыванию и синтезу показывают, что последовательности, богатые G и C, показывают лучшие результаты в самовоспроизводстве, идущем по шаблонному алгоритму без помощи энзимов»210. Это, можно сказать, естественная или физическая орфографическая разнородность. В английском языке буквы «е» и «t» появляются чаще, чем, скажем, «u» или «j», но не потому, что «е» или «t» сложнее стереть или легче ксерокопировать или написать. (В действительности объяснение, разумеется, будет совершенно противоположным; обычно для обозначения чаще всего встречающихся звуков используются символы, которые легче всего прочитать и написать; в азбуке Морзе, например, букве «е» соответствует одна точка, а букве «t» – одно тире.) Для РНК и ДНК объяснение будет обратным: G и C отдается предпочтение, поскольку они более стабильны при воспроизведении, а не потому, что они чаще всего встречаются в «словах» генного кода. Поначалу такая орфографическая разнородность является всего лишь «синтаксической», но затем к ней присоединяется разнородность семантическая:

Исследование генетического кода [«филологическими методами»]… показывает, что первые его кодоны были богаты G и C. Последовательности кода GGC и GCC для аминокислот глицина и аланина из‐за своей химической простоты в изобилии формировались… [в добиологический период]. Утверждение, будто первые кодовые слова были назначены (курсив мой. — Д. Д.) самым распространенным аминокислотам, в высшей степени правдоподобно и акцентирует тот факт, что логика схемы кодирования вырастает из законов физики и химии и их воплощения в Природе211.

Такие «воплощения» представляют собой алгоритмические процессы сортировки, исходящие из вероятностей и фрагментов разнородности, обусловленных фундаментальными законами физики, и создающие структуры, которые в ином случае были бы весьма маловероятны. Как пишет Эйген, у возникающей в результате схемы есть логика; речь идет не просто о случайном сочетании двух предметов, а о «назначении», о системе, которая начинает приобретать смысл и становится осмысленной потому – и только потому, – что работает.

Эти самые первые «семантические» связи, конечно, настолько просты и локальны, что их едва можно счесть семантическими, но тем не менее в них можно различить отсвет референции212: заключается внезапный брак части цепочки нуклеотидов и фрагмента белка, способствовавшего ее воспроизведению. Петля замыкается; и как только начинает работать эта «семантическая» система назначений, все ускоряется. Теперь фрагмент кодовой цепочки может быть кодом чего-то — белка. Так появляется новый критерий оценки, поскольку как катализаторы (и, в частности, катализаторы процесса воспроизводства) некоторые белки лучше других.

Ставки растут. Если поначалу цепочки макросов могли различаться лишь степенью автономной способности к самовоспроизводству, то теперь различия можно усугубить, создав иные, более крупные, структуры и связав с ними свою судьбу. Стоит возникнуть такой обратной связи, как начинается гонка вооружений: все более и более длинные макросы оспаривают друг у друга доступные строительные блоки, чтобы создавать еще более крупные, быстрые, эффективные (но и более дорогие) самовоспроизводящиеся системы. Наше бессмысленное соревнование по подбрасыванию монеты, где значение имеет лишь удача, превращается в состязание в мастерстве. У него есть смысл, ибо теперь недостаточно всего лишь банально выиграть, подбросив монетку – нужно быть в чем-то лучше, чтобы занять место победителя.

И это состязание приносит прекрасные плоды! Белки разительно отличаются друг от друга «навыками», а потому открывается огромное пространство для совершенствования скромных каталитических талантов протеноидов. «Во многих случаях энзиматический катализ ускоряет реакцию в миллион или даже тысячу миллионов раз. Где бы ни производилась количественная оценка этого механизма, результат всегда один и тот же: энзимы – наилучшие катализаторы»213. После того как срабатывает катализатор, возникают новые задачи, требующие решения, и циклы обратной связи расширяются, втягивая в свою орбиту более причудливые возможности совершенствования. «К решению какой бы задачи ни была приспособлена клетка, она решает ее наилучшим образом. Эффективность, с которой один из самых ранних продуктов эволюции, сине-зеленая водоросль, превращает свет в химическую энергию, близка к совершенству»214. Такое совершенство не может быть случайным; оно должно было возникнуть в результате постепенного самонастраивающегося процесса совершенствования. Так с нескольких крошечных разнородностей в изначальных шансах и свойствах строительных блоков начинается процесс лавинообразного самосовершенствования.

3. Правила игры «Жизнь»

Прекраснейшая гармония солнца, планет и комет могла возникнуть лишь по желанию и повелению Разумного и Могущественного Существа.

Исаак Ньютон215


Чем дольше я исследую Вселенную и изучаю детали ее устройства, тем больше я нахожу доказательств тому, что в каком-то смысле миру было известно о нашем грядущем появлении.

Фримен Дайсон216


Легко вообразить мир, который, будучи упорядоченным, тем не менее лишен тех сил и условий, что обеспечивают возникновение значительной глубины.

Пол Дэвис217

К счастью для нас, в мире, определяемом известными нам физическими законами, в Чрезвычайно огромном пространстве возможных белков, макромолекулы со столь протрясающими каталитическими свойствами способны стать эффективными кирпичиками для создания сложных форм жизни. И – тоже к счастью, – эти же физические законы допускают существование в мире именно той меры неравновесности, что необходима для запуска алгоритмических процессов, которые в конечном счете приведут к появлению подобных макромолекул и превратят их в инструменты новой волны изысканий и открытий. Благодарение Богу, такие законы существуют!

Так ведь? Разве не следует возблагодарить за них Создателя? Как мы только что видели, будь эти законы хоть чуть-чуть другими, Древо Жизни могло бы так никогда и не прорасти. Может быть, мы и нашли способ обойтись без Бога при решении проблемы создания систем копировальных механизмов (которые могут, если хоть какие-нибудь из обсуждавшихся в предыдущем разделе теорий верны или близки к истине, автоматически проектировать сами себя), но даже если согласиться с этим, то что делать с важнейшим фактом: ведь законы и в самом деле позволяют осуществиться такому чудесному развитию; и многим этого вполне достаточно, чтобы отождествить Разум Создателя с Мудростью Законодателя, а не Изобретательностью Инженера.

Когда Дарвин обдумывает идею разработки законов природы Богом, у него немало авторитетных сторонников среди как предшественников, так и современников. Ньютон настаивал, что первоначальное устройство мира невозможно объяснить «лишь естественными причинами» – его можно приписать лишь «Разуму и Изобретательности Существа, действующего по собственной Воле». Эйнштейн называл законы природы «секретами Старика» и, как известно, выразил свое несогласие с тем, какую роль в квантовой механике может играть случай, заявив: «Gott würfelt nicht» – «Бог не играет в кости». Совсем недавно астроном Фред Хойл сказал: «Я не верю, что ученый, который изучал эти данные, не пришел бы к заключению, что законы ядерной физики были созданы с учетом тех последствий, которые они вызывают внутри звезд»218. Гораздо более осторожно высказывается физик и космолог Фримен Дайсон: «Я не утверждаю, будто устройство Вселенной доказывает существование Бога. Я утверждаю лишь, что устройство Вселенной согласуется с гипотезой, что разум играет в ее функционировании важнейшую роль»219. Сам Дарвин был готов заключить по этому поводу почетное перемирие, но успешное применение дарвиновской мысли к решению той же проблемы в других контекстах побуждает нас двигаться вперед.

По мере того как мы все больше и больше узнаем о развитии Вселенной после Большого взрыва, об условиях, сделавших возможным формирование галактик и звезд, и о тяжелых элементах, из которых сформировались планеты, физиков и космологов все больше и больше поражает, насколько законы природы чувствительны к изменениям. Скорость света составляет приблизительно 186 000 миль в секунду. А что, если бы она была равна 185 000 миль в секунду или 187 000 миль в секунду? Изменилось ли бы что-то в этом случае? Что, если бы сила тяжести была на 1% больше или меньше существующей? Фундаментальные физические постоянные – скорость света, гравитационная постоянная, сильные и слабые взаимодействия на субатомном уровне, постоянная Планка – имеют значения, которые, разумеется, допускают, чтобы развитие Вселенной привело к наблюдаемому нами результату. Но оказывается, что, если мы представим самое незначительное изменение любой из этих величин, то тем самым постулируем Вселенную, в которой ничего такого бы не произошло и в которой, по всей вероятности, никогда бы не смогло появиться хоть что-то жизнеподобное: ни планет, ни атмосферы, никаких твердых тел, никаких элементов за исключением водорода и гелия, или, может быть, даже без этих исключений – лишь скучное гомогенное вещество в состоянии раскаленной плазмы или столь же скучное ничто. Так не чудо ли, что законы как раз таковы, что мы существуем? В самом деле, так и хочется добавить, что мы были на волосок от гибели!

Нуждается ли этот удивительный факт в объяснении, и если да, то какое объяснение ему можно дать? Согласно антропному принципу, высказывать предположения о Вселенной и ее законах нам следует, исходя из того непреложного факта, что мы (мы – антропоиды, мы – люди) существуем и можем наблюдать и делать выводы. Существует несколько формулировок антропного принципа220.

«Слабый антропный принцип» представляет собой разумный, безвредный, а временами полезный пример применения формальной логики: если x – необходимое условие для существования y, а y существует, то существует и x. Если сознание зависит от сложных физических структур, а сложные структуры – от крупных молекул, состоящих из элементов тяжелее водорода и гелия, то, поскольку все мы обладаем сознанием, мир должен содержать такие элементы.

Но, заметим, что на палубе последнего предложения есть непривязанная пушка: глагол «должен». Я последовал общепринятому словоупотреблению и технически неверно сформулировал утверждение о необходимости. Как скоро понимает любой, кто берется за изучение логики, на самом деле мне следовало написать вот что:

Необходимо: если сознание зависит… то, поскольку мы обладаем сознанием, мир содержит такие элементы.

Заключение, которое можно сделать с полным на то основанием, состоит лишь в том, что мир и в самом деле содержит такие элементы, а не что он должен их содержать. Мы можем допустить, что для того, чтобы мы существовали, он должен содержать такие элементы, но он мог бы их и не содержать, и, будь оно так, нас с нашими волнениями просто бы не было. Вот и все.

Некоторые попытки определить и отстоять «сильный антропный принцип» имеют целью обосновать использование в его формулировке глагола «должен»: словно это не требование грамматики, а вывод о том, какое именно устройство мира неизбежно. Признаться, мне сложно поверить, что простая логическая ошибка стала причиной всего этого замешательства и споров, но вполне очевидно, что такое часто случается – и не только в дискуссиях об антропном принципе. Вспомним, что подобная неразбериха возникла и в связи с дарвиновским выводом в целом. Дарвин заключает, что люди должны были стать плодом эволюции общего с шимпанзе предка или что вся жизнь должна была возникнуть из одного источника, и некоторые странным образом восприняли это как утверждение, будто люди каким-то образом являются неизбежным результатом эволюции или будто появление жизни на нашей планете было неизбежно; но из правильно истолкованных выводов Дарвина ничего подобного не следует. Необходимым является не наше существование, но то, что, поскольку мы существуем, мы – результат эволюции приматов. Представим, что Джон – холостяк. Тогда он должен быть одинок, верно? (Это – логически истинно.) Бедный Джон – никогда он не сможет жениться! В данном примере логическая ошибка очевидна, и стоит всегда помнить о нем, чтобы было с чем сравнивать другие аргументы.

Те, кто верит в любую из предложенных формулировок сильного антропного принципа, полагают, что могут сделать какой-то удивительный и неожиданный вывод из факта существования разумных наблюдателей – например, заявить, что в каком-то смысле Вселенная существует для нас, или, возможно, что мы существуем для того, чтобы Вселенная могла существовать как целое, или даже что Бог сотворил Вселенную так, а не иначе, чтобы стало возможным наше появление. Истолкованные подобным образом, предложенные формулировки являются попыткой возрождения выдвинутого Пейли аргумента от Замысла, со смещением акцента с конкретных структур на самые основные физические законы Вселенной, делающие возможным существование таких структур. И здесь снова под рукой оказываются дарвиновские контраргументы.


Ил. 12


Обсуждаемые нами вопросы очень сложны, и большинство посвященных им дискуссий полны специальной терминологии, но логическая убедительность дарвиновских ответов может стать совершенно очевидной, если рассмотреть гораздо более простой случай. Для начала я должен познакомить вас с игрою «Жизнь» – остроумным мемом, основным автором которого является математик Джон Хортон Конвей. (В дальнейшем я еще несколько раз использую этот ценный мыслительный инструмент. Игра эта прекрасно позволяет взять запутанную проблему и высветить лишь самую ее суть или «скелет» – то, что легко понять и оценить.)

В «Жизнь» играют на двумерной сетке, похожей на шахматную доску, простыми фишками вроде камушков или монеток – или можно соблазниться высокими технологиями и сыграть на экране компьютера. Играют не ради победы; если и сравнивать «Жизнь» с какой-то другой игрой, то это будет раскладывание пасьянса221. Сетка делит поверхность на клетки, и каждая клетка в каждый конкретный момент времени либо ВКЛЮЧЕНА, либо ВЫКЛЮЧЕНА. (Если она ВКЛЮЧЕНА, положите в клетку монетку; если она ВЫКЛЮЧЕНА, оставьте клетку пустой.) Заметьте (см. ил. 12), что у каждой клетки – восемь соседок: четыре по сторонам (северная, южная, восточная и западная) и четыре по углам (северо-восточная, юго-восточная, юго-западная и северо-западная).


Ил. 13


Ил. 14


Время в мире «Жизни» дискретно, а не непрерывно; моменты времени изменяются скачками, и между двумя скачками состояние мира меняется в соответствии со следующим правилом:

Физика «Жизни»: Для каждой из клеток сетки подсчитайте количество ВКЛЮЧЕННЫХ в данный момент соседок. Если их две, то в следующий момент клетка сохраняет текущее состояние (ВКЛ или ВЫКЛ). Если три, то клетка будет ВКЛЮЧЕНА вне зависимости от нынешнего состояния. Во всех других случаях клетка ВЫКЛЮЧЕНА.

Вот и все – в игре лишь одно правило. Теперь вы знаете все, что нужно игроку. Вся физика мира игры «Жизнь» сводится к этому единственному и непреложному закону. Хотя это – фундаментальный «физический» закон мира «Жизни», вначале проще понять эту любопытную физику как биологию: пусть ВКЛЮЧЕННЫЕ клетки означают рождения, ВЫКЛЮЧЕННЫЕ – смерти, а следующие друг за другом скачки представляют собой поколения. Как перенаселение (наличие более трех ВКЛЮЧЕННЫХ соседок), так и изоляция (когда таких соседок меньше двух) ведет к гибели. Рассмотрим несколько простых примеров.


Ил. 15


На ил. 13 три ВКЛЮЧЕННЫХ соседки есть лишь у клеток d и f, так что в следующем поколении лишь в этих клетках произойдут рождения. У клеток b и h лишь по одной ВКЛЮЧЕННОЙ соседке, так что в следующем поколении они умрут. У клетки e – две ВКЛЮЧЕННЫХ соседки, и она останется без изменений. Значит, при следующем «скачке» появится конфигурация с ил. 14.

Очевидно, что при следующем скачке мы вернемся к изображению с ил. 13, и картинки будут сменять одна другую бесконечно, если только на рисунке каким-то образом не возникнет новая ВКЛЮЧЕННАЯ клетка. Это – маячок или светофор. А что станется с конфигурацией на ил. 15?

Ничего. У каждой ВКЛЮЧЕННОЙ клетки три ВКЛЮЧЕННЫЕ соседки, а потому рисунок будет воссоздаваться скачок за скачком. Назовем это натюрмортом. Последовательно применяя один-единственный закон, можно совершенно точно предсказать, какая конфигурация будет получена при следующем скачке, и при том, что будет за ним, и так далее. Иными словами, мир игры «Жизнь» – является моделью, идеально воплощающей прославленный Лапласом детерминизм: если мы, наблюдатели, располагаем описанием текущего состояния мира, то, просто применяя физические законы, можно с абсолютной точностью предсказать, каким он станет в будущем. Или, как я писал ранее222, подходя к существующей в мире «Жизни» конфигурации с физических позиций223, мы способны на совершенно точные предсказания: без помех, неопределенности и с вероятностью равной единице. Более того, поскольку пространство «Жизни» двумерно, ничто не может укрыться от нашего взгляда. Нет ни закулисья, ни скрытых переменных; в мире «Жизни» развитие физических объектов можно наблюдать непосредственно и во всей полноте.


Ил. 16


Если вам скучно следовать простому правилу, то существуют компьютерные симуляции мира «Жизни», в которых можно задать на экране конфигурации и предоставить машине проигрывать алгоритм, раз за разом изменяя эти конфигурации в соответствии с единственным правилом. В лучших из симуляций можно менять пространственный и временной масштаб, наблюдая за процессом то вблизи, то с высоты птичьего полета. У некоторых цветных версий симуляции есть любопытная возможность: ВКЛЮЧЕННЫЕ клетки (часто называемые просто пикселями) меняют цвета в зависимости от возраста; рождаются они, скажем, синими, а затем с каждым новым скачком меняют цвет, становясь сначала зелеными, затем желтыми, оранжевыми, красными, коричневыми и, наконец, черными (и оставаясь черными уже до самой смерти). Это позволяет сразу видеть, насколько стары те или иные элементы узора, какие клетки принадлежат к одному поколению, где рождаются новые и т. д.224


Ил. 17


Скоро становится ясно, что одни простые конфигурации интереснее других. Возьмем отрезок диагонали (ил. 16). Это не маячок; в каждом следующем поколении в изоляции гибнут две крайние ВКЛЮЧЕННЫЕ клетки, а новых клеток не появляется, и вскоре весь отрезок исчезает. Помимо неизменных конфигураций (натюрмортов) и конфигураций, со временем полностью исчезающих (например, только что описанная диагональ), существуют конфигурации, приводящие к появлению разнообразных циклов. Как мы видели, полный цикл маячка занимает два поколения и продолжается ad infinitum, если в пространство не вторгнется иная конфигурация. Такие вторжения и делают «Жизнь» интересной: помимо цикличных конфигураций, существуют и те, что, подобно амебам, плывут по поверхности. Наиболее простая из них – планер: на ил. 17 показано, как эта состоящая из 5 пикселей конфигурация продвигается на один шаг к юго-востоку.

Мир игры «Жизнь» населяют также пожиратели, паровозики, космические ракеты и множество иных удачно названных «существ», возникающих на новом уровне. (Этот уровень аналогичен тому, что в предыдущих работах я называл физической позицией.) У этого уровня свой собственный язык, краткая и упрощенная версия утомительных описаний, которые можно создавать на физическом уровне. Например:

За четыре поколения пожиратель может съесть планер. Что бы ни поглощалось, основной процесс неизменен. Между пожирателем и его жертвой появляется мост. В следующем поколении область моста отмирает из‐за перенаселенности; при этом и пожиратель, и жертва теряют фрагменты тел. Затем пожиратель восстанавливается, а жертва обычно на это не способна. Если, как в случае с планером, остальная часть жертвы гибнет, та считается поглощенной225.

Ил. 18


Заметим, что, стоило нам перейти на новый уровень, как с нашей «онтологией» (каталогом существующих объектов) произошло нечто странное. На физическом уровне движение отсутствует, есть лишь ВКЛЮЧЕННЫЕ и ВЫКЛЮЧЕННЫЕ клетки, определяемые их неизменным местом в пространстве. На уровне замысла устойчивые объекты внезапно начинают двигаться; на ил. 16 показан один и тот же (хотя в каждом поколении состоящий из разных клеток) планер, двигающийся на юго-восток, меняя при этом форму. И в мире станет одним планером меньше после того, как тот, что изображен на ил. 18, будет съеден пожирателем.

Отметим также, что в то время, как на физическом уровне нет и не может быть никаких исключений из общего правила, на новом уровне наши обобщения требуют оговорок: нужно добавлять «обычно» и «при условии, что ничто не вторгнется в пространство». На этом онтологическом уровне заблудшие фрагменты осколков более ранних событий могут «сломать» или «убить» какой-либо объект. Степень их онтологической самостоятельности существенна, но не гарантирована. Сказать, что она значительна, значит согласиться, что можно, почти ничем не рискуя, подняться на этот уровень замысла, принять его онтологию и начать предсказывать (неточно и в общих чертах) поведение более крупных конфигураций или их систем, не заботясь о том, чтобы просчитать происходящее на физическом уровне. Например, можно задаться целью сконструировать некую интересную суперсистему из «частей», доступных на уровне замысла.

Именно это и хотели сделать Конвей и его ученики – и их ожидал невероятный успех. Они спроектировали самовоспроизводящуюся систему, состоящую исключительно из клеток «Жизни», которая также (в значительной степени) была универсальной машиной Тьюринга – двумерным компьютером, который, в принципе, может вычислять любые вычислимые функции (и доказали возможность ее создания). Что могло вдохновить Конвея и его учеников на создание, во-первых, этого мира, а во-вторых, его удивительных жителей? Они пытались на очень абстрактном уровне ответить на один из важнейших вопросов, занимающих нас в этой главе: каков минимальный уровень сложности, потребный для существования самовоспроизводящегося предмета? Они руководствовались давними блестящими рассуждениями Джона фон Неймана, который занимался этой проблемой незадолго до своей смерти в 1957 году. В 1953 году Фрэнсис Крик и Джеймс Уотсон открыли ДНК, но принципы ее работы в течение многих лет оставались загадкой. Фон Нейман довольно подробно описал своего рода дрейфующего робота, который подбирает осколки и обрывки, из которых можно построить его копию, затем повторяющую процесс. Опубликованное посмертно (в 1966 году) описание того, как автомат стал бы считывать собственные чертежи и затем строить по ним новую копию, в потрясающих подробностях предвосхитило последующие открытия механизмов экспрессии и репликации ДНК, но, чтобы сделать свое доказательство возможности самовоспроизводящегося автомата математически строгим и простым, фон Нейман обратился к элементарным двумерным абстракциям, ныне известным как клеточные автоматы. Клетки «Жизненного» мира Конвея – это особенно удачный пример клеточных автоматов.

Вместе со своими учениками Конвей хотел подробно обосновать доказательство фон Неймана, сконструировав двумерный мир с простой физикой, в котором подобная самовоспроизводящаяся конструкция окажется стабильной, рабочей структурой. Подобно фон Нейману они желали дать как можно более общий (и тем самым как можно более независимый от существующей в действительности – земной? локальной? – физики и химии) ответ. Они стремились к чему-то элементарному, что будет легко визуализировать и просчитать, а потому не только перешли от трехмерных моделей к двумерным, но и «оцифровали» время и пространство: как мы видели, все отрезки времени и расстояния описываются целым числом «скачков» и «клеток». Именно фон Нейман взял рожденную Аланом Тьюрингом абстрактную концепцию механического компьютера (который сейчас называется «машиной Тьюринга») и на ее основе разработал техническое описание универсальной электронной вычислительной машины с неизменной программой, осуществляющей последовательную обработку данных (которую сейчас называют «машиной фон Неймана»). В ходе своих блестящих исследований пространственных и структурных требований к такому компьютеру он осознал – и доказал, – что Универсальная машина Тьюринга (машина Тьюринга, способная без всяких исключений вычислить любую вычислимую функцию), в принципе, может быть построена в двумерном пространстве226. Конвей и его ученики также хотели подтвердить это своей собственной попыткой проектирования в двумерном пространстве227.

Было это непросто, но они показали, как можно «построить» рабочий компьютер из более простых «Жизненных» форм. Например, вереницы планеров могут обеспечить «ленточный» ввод/вывод, а устройство считывания с ленты может представлять собой огромный конгломерат пожирателей, планеров и прочей всячины. Как выглядит подобная машина? Паундстоун полагает, что вся конструкция будет состоять из порядка 1013 клеток или пикселей.

Для демонстрации рисунка, состоящего из 1013 пикселей, потребовался бы видеоэкран по меньшей мере в три миллиона пикселей в ширину. Представим, что пиксель – это квадрат со стороной 1 мм (что по стандартам персональных компьютеров является весьма высоким разрешением). Тогда ширина экрана составила бы 3 километра (около двух миль). Речь бы шла о площади в шесть раз больше Монако.

С определенного расстояния пиксели самовоспроизводящегося рисунка уменьшатся до неразличимости. Если вы отойдете от экрана достаточно далеко для того, чтобы без труда видеть все изображение, пиксели (и даже планеры, пожиратели и ружья) окажутся слишком малы, чтобы их разглядеть. Самовоспроизводящийся рисунок будет представлять собой туманное свечение, подобное галактике228.

Иными словами, к тому моменту, как вы встроите достаточно элементов в способную воспроизводить себя конструкцию (в двумерном мире), она, грубо говоря, будет настолько же больше своих мельчайших элементов, насколько организм больше составляющих его атомов. Вероятно, вы не сможете обойтись чем-то более простым, хотя это и не доказано. Догадка, с которой мы начали главу, блестяще подтверждается: для превращения доступных фрагментов в нечто самовоспроизводящееся требуется много конструкторско-проектной работы (проделанной Конвеем и его учениками); самовоспроизводящиеся организмы не образуются в результате космической случайности – они слишком велики и дороги.

Игра «Жизнь» иллюстрирует множество важных принципов и может дать материал для разнообразных доводов и мысленных экспериментов, но, прежде чем перейти к своему основному тезису, я остановлюсь здесь лишь на двух особенно значимых для нас на данном этапе моментах229.

Для начала отметим, что здесь – так же как у Юма – размывается граница между Порядком и Замыслом. Конвей спроектировал (designed) целый мир игры «Жизнь», то есть он установил Порядок, которому надлежало определенным образом функционировать. Но считать ли, например, планеры плодами замысла – или всего лишь природными объектами, подобными атомам и молекулам? Несомненно, устройство считывания ленты, скомпонованное Конвеем и его учениками из планеров и других подобных объектов, является продуктом замысла, но кажется, что простейший планер просто «автоматически» получился в результате действия элементарных физических законов мира «Жизни» – никому не пришлось его проектировать или изобретать; просто обнаружилось, что физика «Жизни» подразумевает его существование. Но, разумеется, на деле это верно в отношении всего, существующего в мире «Жизни». Там не случается ничего, что явным образом не подразумевалось бы (не выводилось бы логически простым доказательством теорем) физикой и изначальным расположением клеток. Некоторые явления, существующие в этом мире, всего лишь более удивительны и непредсказуемы (для нас, с нашими ограниченными умственными способностями), чем другие. В некотором смысле самовоспроизводящаяся галактика пикселей Конвея – это «всего лишь» еще одна макромолекула «Жизни» с очень долгим и сложным жизненным циклом.

Что, если мы запустим огромную стаю таких самовоспроизводящихся организмов и позволим им соревноваться за ресурсы? И, предположим, в результате они эволюционируют, то есть их потомки не будут их точными копиями. Будут ли эти потомки с большим основанием считаться продуктами замысла? Возможно, но между плодами порядка и замысла невозможно провести четкой границы. Инженер начинает с нескольких objets trouvés: он находит предметы со свойствами, которые можно использовать в более крупных конструкциях, но различия между спроектированным и сымпровизированным гвоздем, между распиленной доской и шиферной плиткой естественного происхождения – не «принципиальны». Крылья чайки прекрасно поднимают ее в воздух, макромолекулы гемоглобина – непревзойденные транспортировочные машины, молекулы глюкозы – весьма эффективные источники энергии, а атомы углерода образуют превосходный универсальный клей.

Во-вторых, «Жизнь» – замечательный пример преимуществ – и связанных с ними недостатков – компьютерных симуляций, призванных разрешить научные проблемы. Некогда единственным способом убедиться в правоте крайне абстрактных обобщений было строгое их доказательство, исходившее из фундаментальных принципов или аксиом соответствующей теории: математики, физики, химии, экономики. В XX веке начало становиться понятным, что многие из теоретических расчетов, которые хотелось бы провести в области этих наук, попросту находятся за гранью человеческих возможностей – они «невычислимы». Затем появились компьютеры, предложившие новый подход к подобным проблемам: масштабные симуляции. Знакомый нам всем по телевизионным выступлениям метеорологов пример – симуляции погодных явлений, но компьютерные симуляции также совершили переворот в научных исследованиях во многих других областях; вероятно, это самый важный эпистемологический прорыв в научной методологии со времен изобретения точных часовых механизмов. В эволюционной теории недавно появилась новая дисциплина – Искусственная жизнь: под ее эгидой на всех уровнях, от субмолекулярного до экологического, развернулась настоящая Золотая лихорадка исследований. Однако даже среди тех ученых, что не встали под ее знамена, наблюдается принципиальное согласие, что большинство их теоретических исследований эволюции (например, большинство последних работ, обсуждаемых в этой книге) были бы попросту немыслимы без компьютерных симуляций, позволивших проверить (подтвердить или опровергнуть) догадки теоретиков. В самом деле, как мы видели, сама идея эволюции как алгоритмического процесса не могла быть должным образом сформулирована и оценена до тех пор, пока не стало возможным проверить масштабные и запутанные алгоритмические модели взамен крайне упрощенных моделей теоретиков более раннего периода.

Конечно, некоторые научные проблемы невозможно решить с помощью симуляций, а другие, вероятно, поддаются лишь такому решению, но между этими двумя крайностями существуют проблемы, к которым, в принципе, возможны два подхода, что приводит на ум два метода решения задачи о поездах, предложенной фон Нейману: «остроумный» посредством теории и «поверхностный» – посредством прямолинейной симуляции и наблюдения. Было бы очень жаль, если бы множество неоспоримых преимуществ порожденных симуляциями миров подавило наше стремление понять эти явления на более глубоком теоретическом уровне. Однажды я беседовал с Конвеем о создании игры «Жизнь», и он сокрушался, что теперь мир игры исследуется практически исключительно «эмпирическими» методами – на компьютере задаются все интересующие вас варианты, а дальнейшее – дело наблюдения. Это не только, как правило, лишает исследователя даже возможности разработать строгое доказательство обнаруженных закономерностей, но и – отметил он – люди, использующие компьютерные симуляции, обычно недостаточно терпеливы; они перебирают комбинации и наблюдают за ними 15–20 минут и, если ничего интересного не происходит, бросают наблюдение и отмечают вариант как уже исследованный и неинтересный. Есть опасность, что такой близорукий подход преждевременно отсекает важные направления исследований. Это – профессиональный риск всех исследователей компьютерных симуляций, который является всего лишь высокотехнологичной версией фундаментальной уязвимости философов, ошибочно принимающих недостаток воображения за осознание необходимости. Даже снабженное протезами воображение способно совершить ошибку, в особенности если его применяют без должной строгости.

А теперь настало время главного тезиса. Когда Конвей со студентами впервые попробовали создать двумерный мир, в котором происходило бы что-нибудь интересное, они обнаружили, что ничего не работает. Чтобы отыскать простой физический закон «Жизни» в Чрезвычайно обширном пространстве возможных простых законов, группе трудолюбивых и талантливых исследователей потребовалось больше года. Все очевидные варианты не подошли. Чтобы понять суть проблемы, попробуйте изменить «константы» для рождений и смертей (замените, например, в правиле о рождениях тройку на четверку) и посмотрите, что выйдет. Миры с измененной физикой либо немедленно застынут в одном состоянии, либо столь же быстро рассыплются в прах. Конвею и его ученикам нужен был мир, в котором был бы возможен рост, но не слишком взрывной; в котором «организмы» – высокоорганизованные конфигурации клеток – могли бы двигаться и изменяться, но одновременно сохраняли бы устойчивость во времени. И, разумеется, это должен был быть мир, в котором структуры могли бы «совершать» что-то интересное (например, протаптывать тропинки, поглощать или отгонять других «существ»). Насколько Конвею известно, из всех воображаемых двумерных миров лишь один удовлетворяет этим desiderata: мир игры «Жизнь». В любом случае все проверенные в последующие годы варианты и близко не могли сравниться с ним по критериям Конвея: простоте, изобилию, элегантности. Мир «Жизни» может и в самом деле оказаться лучшим из возможных (двумерных) миров.

А теперь представим, что в игре «Жизнь» некие самовоспроизводящиеся Универсальные машины Тьюринга беседуют об известном им мире с его удивительно простой физикой, которую во всем ее многообразии можно сформулировать в одном-единственном предложении230. Они допустили бы логическую ошибку, заявив, что, поскольку они существуют, мир игры «Жизнь» с его физикой был обязан существовать; в конце концов, Конвей мог решить стать сантехником или игроком в бридж вместо того, чтобы изучать этот мир. Но что, если бы они решили, что их мир с его элегантной поддерживающей «Жизнь» физикой попросту слишком прекрасен, чтобы появиться без участия Разумного Создателя? Они были бы правы, скоропалительно решив, что обязаны существованием действиям мудрого Законодателя! Бог существует, и имя ему – Конвей.

Однако их вывод будет скоропалительным. Существование Вселенной, подчиняющейся ряду законов, пусть даже столь элегантных, как закон «Жизни» (или законы физики нашего мира), логически не требует существования разумного Законодателя. Заметим, во-первых, что в истории создания игры «Жизнь» было два вида интеллектуальной работы: с одной стороны, потребовалось провести начальные исследования, приведшие к формулировке закона, провозглашенного Законодателем, а с другой – проектно-конструкторскую работу должны были проделать использующие этот закон Демиурги. Последовательность могла бы быть следующей: сначала Конвей в результате гениального озарения устанавливает физические законы мира «Жизни», а затем он со своими студентами в соответствии с установленным законом разрабатывает и создает удивительных жителей этого мира. Но на деле обе задачи решались одновременно: множество неудачных попыток создать нечто интересное помогли Конвею сформулировать закон. Во-вторых, заметим, что это постулируемое разделение труда является иллюстрацией фундаментальной дарвиновской темы из предыдущей главы. Мудрое Божество должно привести мир в движение, и речь тут об открытии, а не творении, работе для Ньютона, а не для Шекспира. Ньютон (как и Конвей) обнаружил платонические неподвижные ориентиры, которые, в принципе, мог бы найти кто угодно, а не уникальные объекты, каким-либо образом зависящие от особенностей сознания своих авторов. Если бы Конвей никогда не занялся созданием миров клеточных автоматов – если бы он вообще никогда не существовал – какой-нибудь другой математик прекрасно мог бы наткнуться на в точности тот же мир, за который мы благодарны Конвею. Итак, следуя по этой дорожке за дарвинистами, мы наблюдаем, как Бог-Демиург обращается в Бога-Законодателя, который на глазах сливается с Богом-Законооткрывателем. Тем самым гипотетический вклад Бога в создание мира становится все менее личным, а потому растет вероятность, что эта же работа была проделана чем-то упорным и неразумным!

Юм уже изложил для нас этот довод, и теперь, освоившись с дарвинистским мышлением о более привычных предметах, мы можем путем экстраполяции вывести положительную дарвинистскую альтернативу гипотезе, будто наши законы дарованы Богом. Какой должна быть такая альтернатива? Она заключается в том, что миры (то есть целокупные вселенные) эволюционируют и наш мир – всего лишь один из бессчетного множества других, существовавших в вечности. Есть два весьма различных подхода к эволюции законов: один сильный и более «дарвинистский» чем другой, поскольку предполагает нечто подобное естественному отбору.

Могло ли существовать нечто вроде неравномерного воспроизводства вселенных, когда у некоторых разновидностей «отпрысков» больше, чем у других? Как мы видели в первой главе, Филон Юма размышляет над этим:

И какое удивление должны мы почувствовать, когда увидим, что этот плотник – ограниченный ремесленник, подражавший другим и копировавший то искусство, которое лишь постепенно совершенствовалось в течение длинного ряда веков после бесчисленных попыток, ошибок, исправлений, размышлений и споров. Быть может, в течение вечности множество миров было изуродовано и испорчено, пока не удалась нынешняя система; быть может, при этом было потрачено много труда, сделано много бесплодных попыток и искусство миросозидания совершенствовалось в течение бесчисленных веков медленно и постепенно231.

Юм связывает «постепенное совершенствование» с предпочтением, осуществляемым «ограниченным ремесленником», которого мы без всякого ущерба для подъемной силы можем заменить чем-то еще более ограниченным: совершенно алгоритмическим дарвиновским процессом миросозидания. Хотя Юм, очевидно, считал эту концепцию всего лишь забавной философской фантазией, ее разработкой недавно занялся физик Ли Смолин232. Его основная идея состоит в том, что сингулярности, известные как черные дыры, являются, по сути дела, местом рождения дочерних вселенных, в которых фундаментальные физические константы немного отличаются (случайным образом) от физических констант вселенной-прародительницы. Следовательно, согласно гипотезе Смолина, мы наблюдаем как неравномерное воспроизводство, так и мутации – две ключевые характеристики дарвиновского алгоритма отбора. Вселенные, в которых физические константы случайным образом оказались таковы, что в них чаще появляются черные дыры, ipso facto будут иметь больше потомков, которые тоже будут иметь больше потомков, и так далее – это стадия отбора. Отметим, что в этом сценарии за вселенными не является мрачный жнец; все они живут и в должное время «умирают», но у некоторых просто более многочисленное потомство. Итак, согласно этой идее, то, что мы обитаем в мире, где есть черные дыры, не просто любопытное совпадение, но и не абсолютная логическая необходимость. Это, скорее, своего рода условная почти-необходимость, с которой мы сталкиваемся в любом описании эволюционного процесса. Связующим звеном, по мнению Смолина, является углерод, участвующий как в схлопывании газовых облаков (или, иными словами, в рождении звезд, предшествующем появлению черных дыр), так и, разумеется, в молекулярном конструировании наших организмов.

Можно ли проверить эту теорию? Смолин делает несколько предсказаний: если их опровергнуть, опровергнута будет и его идея. Дело должно обстоять так, чтобы все «близкие» к нашим варианты физических констант приводили к формированию вселенных, в которых черные дыры менее вероятны или встречаются реже, чем в нашей Вселенной. Если коротко, он полагает, что наша Вселенная должна быть хотя бы на местном, если не на глобальном уровне победителем в соревнованиях по созданию черных дыр. Проблема в том, что, насколько я понимаю, слишком мало ограничений налагается на то, что именно можно считать «близким» вариантом и почему; но, возможно, дальнейшая разработка теории позволит это прояснить. Стоит ли говорить, что непонятно, что делать с этой идеей сейчас, но, каким бы ни был окончательный вердикт ученых, эта идея уже позволяет подкрепить философский тезис. В числе других Фриман Дайсон и Ферд Хойл считают, что им открылась удивительная закономерность физических законов; если бы они или кто-либо другой допустили тактическую ошибку, задав риторический вопрос: «Возможны ли какие-либо иные объяснения кроме божественного вмешательства?» – у Смолина было бы наготове остроумное опровержение. (Я учу своих студентов быть внимательными к риторическим вопросам в области философии. Они маскируют любые слабости аргументов.)

Но ради чистоты эксперимента предположим, что размышления Смолина неверны; предположим, что в конечном счете отбор вселенных не работает. Существуют и более слабые, полударвинистские умозаключения, которые также прекрасно отвечают на наш риторический вопрос. Как мы уже отмечали, Юм также рассматривал эту более слабую идею в восьмой части своих «Диалогов».

Вместо того чтобы предполагать, что материя бесконечна, как это делал Эпикур, предположим, что она конечна. Конечное число частиц способно лишь к конечному числу перемещений, и при вечной длительности должно произойти то, что всякий возможный порядок, всякое возможное расположение окажутся испробованы бесконечное число раз. <…> Предположим… что материя была приведена в какое-нибудь состояние слепой, ничем не руководимой силой; очевидно, что это первоначальное состояние должно быть, по всей вероятности, самым неустроенным и беспорядочным, какое только можно себе представить, и лишенным какого-либо сходства с теми произведениями человеческой изобретательности, которые наряду с симметрией частей обнаруживают приспособленность средств к целям и стремление к самосохранению <…> предположим, что действующая сила, какова бы она ни была, продолжает действовать на материю <…> Так вселенная продолжает существовать в течение многих веков при постоянной смене хаоса и беспорядка. Но нет ли какой-нибудь возможности, чтобы в конце концов она пришла в уравновешенное состояние?.. Не вправе ли мы считать, более того, не можем ли мы быть уверены в том, что такое состояние произведено вечными переворотами ничем не руководимой материи? И не может ли это объяснять всю видимую мудрость и преднамеренность, проявляющуюся во вселенной?

В этом случае не идет речи ни о каком отборе: Юм просто обращает наше внимание на тот факт, что в нашем распоряжении вечность. В данном случае нет срока в пять миллиардов лет, которые отведены эволюции жизни на Земле. Как мы видели в рассуждениях о Вавилонской библиотеке и Библиотеке Менделя, чтобы пересекать Чрезвычайно обширные пространства за не Чрезвычайно большие промежутки времени, потребны воспроизводство и отбор, но если ограничения по времени отсутствуют, отбор уже не будет необходимым условием. За вечность можно попасть в любую точку Вавилонской библиотеки или Библиотеки Менделя – или Библиотеки Эйнштейна (все возможные значения всех физических констант) – покуда вы продолжаете двигаться. (Юм представляет себе «действующую силу», под действием которой продолжалось бы движение, и это напоминает об аргументе Локка о бездвижной материи, но не означает, что движущая сила хоть сколько-нибудь разумна.) Действительно, если вечно перебирать все возможности, то вы побываете в каждой возможной точке Чрезвычайно обширных (но конечных) пространств не однажды, а бесконечное множество раз!

За последние годы физики и космологи серьезно рассматривали несколько вариантов этого умозаключения. Например, Джон Арчибальд Уилер233 предположил, что на протяжении вечности Вселенная осциллирует, и за Большим взрывом следует расширение, а затем сжатие вплоть до Большого схлопывания, за которым следует еще один Большой взрыв и так далее вечно, с небольшими вариациями в константах и других ключевых параметрах в каждом цикле. Каждое возможное сочетание проверялось бесконечно много раз, и потому каждая вариация на любую возможную тему, не только «целесообразная», но и абсурдная, разыгрывалась не единожды, но бесконечно много раз.

Сложно поверить, что эта идея подлежит какой-либо эмпирической проверке, но нам следует воздержаться от суждения. Может статься, что вариации и разработки этой темы имеют следствия, которые можно подтвердить или опровергнуть. Тем временем стоит отметить, что это семейство гипотез доводит до логического завершения объяснительные принципы, прекрасно работающие в области, где проверка возможна. Последовательность и простота говорят в его пользу. И этого, опять-таки, несомненно, достаточно, чтобы традиционная альтернатива потеряла свою привлекательность234.

Любому победителю состязания по подбрасыванию монеты будет соблазнительно счесть, что он наделен волшебной силой, в особенности если он незнаком с другими игроками. Предположим, вы собрались организовать турнир по подбрасыванию монеты, в котором будет десять раундов и ни один из 1024 участников которого не будет понимать, что участвует в состязании. Каждому из них вы говорите: «Прими поздравления, друг мой! Я Мефистофель, и я наделю тебя великой силой. С моей помощью ты, десять раз кряду подбросив монету, победишь десять раз подряд!» – а затем организуете своим простофилям встречи, сводя по одной паре за раз, до тех пор пока у вас не будет победителя. (Вы никогда не позволяете соперникам обсуждать свою связь с вами и прощаетесь с 1023 проигравшими, sotto voce насмехаясь над доверчивостью того, кто мог поверить, будто вы – Мефистофель!) У победителя – а без него не обойдется – несомненно, будет доказательство своей Избранности, но если он в него поверит, то это будет просто иллюзией того, что можно было бы назвать ретроспективной близорукостью. Победитель не понимает, как все было подстроено таким образом, чтобы кто-то да победил, и лишь по случайности он и есть этот кто-то.

Но если бы Вселенная была устроена так, чтобы в ней со временем испытывалось бесконечное количество различных «физических законов», то, будь мы склонны полагать, будто законы природы были созданы нарочно для нас, мы столкнулись бы с тем же соблазном. Это довод не в пользу того, что Вселенная является или должна быть устроена таким образом, но в пользу более скромного вывода, что никакое качество наблюдаемых «законов природы» не является неуязвимым для этой альтернативной дефляционной интерпретации.

Стоит сформулировать эти все более спекулятивные и утонченные дарвинистские гипотезы, и они – как это характерно для дарвинизма – начинают приводить к постепенному упрощению стоящей перед ними объяснительной задачи. Все, что сейчас остается объяснить, это несомненная и очевидная элегантность или поразительность наблюдаемых физических законов. Если вы сомневаетесь, что гипотеза о бесконечности различных вселенных может объяснить эту элегантность, вам стоит задуматься, что она имеет по меньшей мере столько же оснований оказаться не вызывающим дальнейших вопросов объяснением, что и любая традиционная альтернатива; к тому моменту, как Бог оказывается настолько обезличенным, что представляется уже неким абстрактным и вневременным принципом красоты или блага, сложно понять, как существование Бога может что-нибудь объяснить. Что может подтвердить это «объяснение», что не было бы уже дано в описании удивительного явления, которое следовало объяснить?

Дарвин начинает атаку на Лестницу творения с середины: Дайте мне Порядок и время – и я объясню Замысел. Теперь мы увидели, как просачивается вниз по ступеням универсальная кислота: если мы дадим последователям Дарвина Хаос (в старомодном смысле совершенно бессмысленной случайности) и вечность, они объяснят Порядок – тот самый Порядок, который нужен для объяснения Замысла. Нуждается ли в свою очередь в объяснении полный Хаос? Что осталось объяснить? Некоторые полагают, что осталось еще одно «почему»: почему существует что-то, а не ничто? Мнения по вопросу о том, является ли этот вопрос сколько-нибудь разумным, различаются235. Если он разумен, то ответ «Потому что существует Бог», вероятно, не хуже прочих, но взгляните-ка на его соперника: «А почему бы и нет?»

4. Вечное возвращение – жизнь, лишенная оснований?

Наука прекрасно разрушает метафизические ответы, но не может предложить им замену. Наука разрушает фундамент, но ничем не заполняет пустоту. Хотим мы того или нет, наука вынуждает нас жить без оснований. Читатели Ницше были шокированы, но сейчас его слова – общее место; на данном этапе своей истории, конца которому не видно, приходится философствовать без «оснований».

Хилари Патнэм236


Те, кто приветствовал Дарвина как благодетеля человечества, кажется, не заметили, что Вселенная лишилась смысла. Ницше полагал, что теория эволюции правильно отражает мир, но картина эта чудовищна. Его философия была попыткой создать новое представление о мире, которое принимало бы дарвинизм в расчет, но не упразднялось бы им.

Р. Дж. Холлингдейл237

После публикации «Происхождения видов» Фридрих Ницше заново открыл идею, которую уже обдумывал Юм: идею, что вечное возвращение слепых и бессмысленных изменений – хаотичная и бесцельная перетасовка материи и закона – неизбежно породит миры, эволюция которых со временем приведет к нашим вроде бы осмысленным личным историям. Эта идея вечного возвращения стала краеугольным камнем его нигилизма и тем самым отчасти заложила основания того, что позднее превратилось в экзистенциализм.

Идея, что происходящее сейчас уже случалось в прошлом, должно быть, так же стара, как и феномен déjà vu, так часто вызывающий к жизни связанные с ней суеверия. Циклические космогонии нередки в различных культурах. Но когда Ницше натолкнулся на концепцию Юма (и Джона Арчибальда Уилера), она показалась ему чем-то намного большим, чем забавный мысленный эксперимент или размышление о древних предрассудках. Он думал – по крайней мере, какое-то время, – что нашел исключительно важное научное доказательство238. Полагаю, что воспринять эту идею серьезнее, чем это сделал Юм, Ницше побуждало смутное понимание сокрушительной силы дарвиновского мышления.

Ницше практически всегда пишет о Дарвине с враждебностью; но он о нем пишет, и уже этого достаточно, чтобы согласиться с Вальтером Кауфманом, настаивавшим, что Ницше «не был дарвинистом, но Дарвин пробудил его от догматического забытья подобно тому, как веком раньше Юм пробудил Канта»239. То, как Ницше пишет о Дарвине, также свидетельствует, что он воспринимал идеи Дарвина сквозь призму распространенных ошибочных толкований и ложных представлений, так что, вероятно, с Дарвином он был преимущественно знаком по восторженным переложениям немецких и, шире, европейских популяризаторов. В немногих случаях, когда Ницше критикует какие-то конкретные идеи Дарвина, он понимает его совершенно неверно, жалуясь, например, что Дарвин проигнорировал возможность «бессознательного отбора», который был одной из важнейших вспомогательных идей «Происхождения видов». Он говорит о «полной bêtise у англичан, Дарвина, Уоллеса» и сокрушается: «Наконец, смешение доходит до того, что и дарвинизм принимают за философскую систему – теперь господство на стороне человека науки»240. Однако другие постоянно принимали его за дарвиниста: «Другой ученый рогатый скот заподозрил меня из‐за него в дарвинизме»241, – ярлык, над которым он насмехался, продолжая в своей «Генеалогии морали» 242создавать одно из первых дарвинистских исследований эволюции этики, до сих пор непревзойденное в своей проницательности (к этой теме мы вернемся в шестнадцатой главе).

Для Ницше его довод в пользу вечного возвращения был свидетельством абсурдности и бессмысленности жизни, того, что Вселенной не было дано свыше никакой цели. И в этом, несомненно, корень страха, испытываемого многими, кто знакомится с Дарвином. Так рассмотрим же версию Ницше, самую бескомпромиссную из возможных. Почему, собственно, вечное возвращение лишает жизнь смысла? Разве это не очевидно?

Что, если бы днем или ночью подкрался к тебе в твое уединеннейшее одиночество некий демон и сказал бы тебе: «Эту жизнь, как ты ее теперь живешь и жил, должен будешь ты прожить еще раз и еще бесчисленное количество раз; и ничего в ней не будет нового, но каждая боль и каждое удовольствие, каждая мысль и каждый вздох и все несказанно малое и великое в твоей жизни должно будет наново вернуться к тебе, и все в том же порядке и в той же последовательности». Разве ты не бросился бы навзничь, скрежеща зубами и проклиная говорящего так демона? Или тебе довелось однажды пережить чудовищное мгновение, когда ты ответил бы ему: «Ты – бог, и никогда не слышал я ничего более божественного!»243

Освобождение или ужас звучат в этих словах? Кажется, сам Ницше не мог этого решить – возможно, потому что он часто окутывал глубинные смыслы своей «научнейшей из гипотез» такими весьма таинственными одеяниями. Можно немного снизить градус, поговорив о чарующей пародии на этот фрагмент из Ницше, созданной писателем Томом Роббинсом в романе «Даже девушки-ковбои иногда грустят»:

В этом году Джулиан подарил Сисси игрушечную тирольскую деревеньку, сделанную с удивительным мастерством.

Там был крохотный собор, где витражные окна делали солнечный свет разноцветным, точно фруктовый салат. Там были площадь и ein Biergarten, где в субботние вечера становилось довольно шумно. Была булочная, где всегда пахло горячим хлебом и штруделями. Были ратуша и полицейский участок с раздвижными стенами, за которыми волокиты и коррупции таилось не больше и не меньше, чем обыкновенно бывает. Были малыши-тирольцы в искусно вышитых кожаных бриджах, а под бриджами – не менее искусно выполненные гениталии. Были лыжные магазины и множество других интересных мест, включая детский приют, спроектированный так, чтобы на каждый Сочельник сгорать дотла. И тогда сироты в пылающих ночных сорочках бросались в снег. Ужасно. Где-то к середине января являлся пожарный инспектор и осматривал развалины, бормоча: «Если б меня послушали, дети бы сейчас были живехоньки»244.

Примечательно уже то, с каким искусством это написано. Кажется, что ежегодное повторение драмы сиротского приюта лишает этот мирок любого подлинного смысла. Но почему? Почему именно повторение делает причитания пожарного инспектора столь фальшивыми? Возможно, получше разобравшись, что именно они означают, мы заметим уловку, заставляющую рассказ «работать». Отстраивают ли сиротский приют сами крохотные тирольцы или у миниатюрной деревеньки есть кнопка перезагрузки? А в чем разница? Ну а откуда берутся новые сироты? Может, «погибшие» воскресают?245 Заметим, что, по словам Роббинса, приют был спроектирован так, чтобы каждый Сочельник сгорать дотла. Очевидно, создатель этого маленького мира издевается, высмеивая то, как серьезно мы воспринимаем возникающие в нашей жизни проблемы. Кажется, мораль ясна: если у этой драмы есть смысл, ниспосланный Создателем свыше, то это – непристойная шутка, опошление человеческих мытарств в дольнем мире. Но что, если смысл – созидание самих людей, появляющихся заново в каждом цикле, а не в некоем даре свыше? Это может помочь нам найти смысл, которому бы не грозило повторение.

Это – определяющая тема экзистенциализма в разнообразных его изводах: единственный возможный смысл – это смысл, который вы (как-то) создаете сами. Как именно достичь этой цели, всегда было для экзистенциалистов своего рода загадкой, но, как мы вскоре увидим, в своем описании процесса порождения смысла дарвинизм способен предложить отгадку. Ключ к тайне, опять-таки, в том, чтобы отказаться от идеи примата Разума, принадлежащей Джону Локку, и заменить ее концепцией, в которой сама значимость, как и все, что нам дорого, постепенно возникает из ничего и эволюционирует.

Прежде чем поговорить об этом подробнее, можно остановиться и посмотреть, куда завели нас окольные пути. Мы начали с несколько инфантильной идеи Бога-Мастерового и поняли, что, если воспринимать ее буквально, у этой идеи нет шансов. Затем мы посмотрели с позиции Дарвина на имеющий место в действительности процесс «проектирования», плодами которого являемся как мы, так и все чудеса природы, и обнаружили, что Пейли был прав, утверждая, что появление всего этого потребовало огромной проектно-конструкторской работы, но что тому есть вполне реалистичное объяснение: множество идущих одновременно, а потому непомерно расточительных процессов бездумного, алгоритмического проектирования и проверки, в котором, однако, даже самые незначительные усовершенствования замысла бережливо взращиваются, копируются и используются на протяжении миллиардов лет. Своей удивительной уникальностью и индивидуальностью творение обязано не шекспировскому творческому гению, а непрестанному воздействию изменений, аккумулирующийся результат которых Крик назвал «замороженными случайностями»246.

Такая концепция процесса творения, очевидно, все еще оставляет место для Бога-Законодателя, но тот в свою очередь отступает перед ньютоновским Богом – Открывателем законов, который, как мы только что видели, тоже постепенно исчезает, не оставляя после себя вовсе никакого Разумного Актора. Остается лишь то, к чему бездумно приводит процесс вечной перетасовки (если он приводит хоть к чему-нибудь): вневременная платоническая возможность порядка. И эта возможность – как постоянно заявляют математики – прекрасна; пусть сама по себе она не является чем-то разумным, но, чудо из чудес, она умопостигаема. Будучи абстрактной и существуя вне времени, она лишена основания или источника, нуждающегося в объяснении247. Что нуждается в объяснении своего происхождения, так это сама конкретная Вселенная, и, как давно спрашивал Филон Юма: Почему бы не ограничиться материальным миром? Он, как мы видели, и в самом деле сам себя вытаскивает из болота; он создает себя ex nihilo, или, во всяком случае, из чего-то почти неотличимого от абсолютного ничто. В отличие от ошеломительно таинственного вневременного само-творения Бога, это сотворение себя вовсе не чудесно и оставило множество следов. И, поскольку оно не только конкретно, но и является плодом изысканно детализированного исторического процесса, это само-творение – творение абсолютно уникальное, включающее в себя и превосходящее все романы, картины и симфонии, созданные людьми; в гиперпространстве возможностей оно занимает место, отличающееся от всех прочих.

В XVII веке Бенедикт Спиноза отождествил Бога с Природой, утверждая, что истинным путем богословия является научное исследование. За эту ересь он подвергся преследованиям. Еретический образ двуликого Януса Спинозы – Deus sive Natura (Бог или Природа) – внушает беспокойство (или кажется некоторым соблазнительным): персонализировал ли он Природу, предлагая это научное упрощение, или деперсонализировал Бога? Более плодотворная идея Дарвина задает структуру, в рамках которой мы способны рассматривать разумность Матери-Природы (или, может быть, лишь кажущуюся разумность?) как нечудесную и нетаинственную – и тем самым еще более удивительную – характеристику этой самосозидающей сущности.


ГЛАВА 7: Первый живой организм должен был и притом не мог существовать: простейший живой организм слишком сложен, он потребовал слишком большой проектно-конструкторской работы, чтобы возникнуть в результате случайного стечения обстоятельств. Эта дилемма решается не введением небесного крюка, а длинной серией дарвиновских процессов: самовоспроизводящиеся макросы, до которых (или одновременно с ними), возможно, существовали самовоспроизводящиеся кристаллы глины, на протяжении миллиарда лет постепенно развивались, переходя от состязаний в удаче к состязаниям в мастерстве. А физические закономерности, от которых зависели эти подъемные краны, сами могли быть результатом слепой и равнодушной перетасовки Хаоса. Таким образом, практически из ничего сотворил себя мир, который мы знаем и любим.


ГЛАВА 8: Работа естественного отбора является исследовательско-проектной, так что биология, по сути, сходна с инженерным делом – вывод, вызвавший сильнейшее сопротивление из‐за ложного страха перед тем, что он мог подразумевать. На деле он проливает свет на некоторые из наших сложнейших загадок. Стоит начать рассматривать все с позиции инженера, как станет можно объяснить и объединить важнейшее биологическое понятие функции и важнейшее философское понятие смысла. Поскольку наша собственная способность воспринимать и создавать смыслы – наш разум – укоренена в нашем статусе наиболее совершенных продуктов дарвиновских процессов, различие между естественным и искусственным интеллектом исчезает. Однако существуют важные различия между творениями людей-инженеров и плодами эволюции, основанные на различиях между процессами их создания. Сейчас мы начинаем фокусировать внимание на грандиозных эволюционных процессах, используя плоды созданной нами технологии, компьютеры, для решения все еще неразрешенных вопросов.

Глава восьмая