Оружие авиации — страница 19 из 24

Высокая скорость вычислений — не единственное преимущество машины. Она может производить также большие по объему расчеты. Этот объем зависит от возможности запоминающего устройства удерживать («запоминать») то или иное количество электрических сигналов, соответствующих цифрам.

Электронные машины работают автоматически, но сконструировал и построил их человек. Он же и задает программу работы машине. Как бы совершенна ни была электронная вычислительная машина, без человека она мертва, ничего сделать сама не в состоянии.

Как же человек может использовать машину, в частности, для автоматического сброса бомб с расчетом, что они с достаточной точностью поразят выбранную цель?

Для того чтобы определить необходимый угол прицеливания с помощью прицелов, которые были описаны в предыдущих разделах, штурман должен видеть с самолета цель или ее радиолокационное изображение. В зависимости от положения самолета относительно цели определяется угол прицеливания. Но задача может решаться и иначе. Зная положение цели, которую нужно поразить бомбами, можно заранее вычислить угол прицеливания и определить точку в пространстве над целью, которой соответствовал бы этот угол. После этого остается лишь точно вывести самолет в эту точку и сбросить бомбы.

Предварительное вычисление координат точки сброса бомб может быть быстро произведено с помощью электронной вычислительной машины, которая может быть использована и для последующих действий. Для этого в запоминающее устройство машины должны быть введены координаты точки сброса, а программа работы составлена таким образом, чтобы машина непрерывно следила за текущим положением самолета в воздухе и в тот момент, когда он придет в желаемую точку, подала сигнал на бомбосбрасыватель.

Примерно на таком принципе действует описанная в зарубежной литературе универсальная самолетная электронная вычислительная машина «Диджитак». Для работы ее используются бортовые навигационные средства и наземная радионавигационная система. Наземная система представляет собой ряд радиомаяков, непрерывно излучающих в пространство радиосигналы. Величина сигнала, принимаемого на самолете, зависит от его положения относительно маяка. Таким образом, можно заранее определить качество приема сигналов по маршруту и, выдерживая его, точно следовать в заданном направлении. Наблюдение за сигналами маяков и поручено самолетной вычислительной машине. Арифметическое устройство машины «Диджитак» по заданной программе сравнивает текущие координаты самолета с заданными и в случае необходимости подает на автопилот команды об изменении курса и высоты. Каждый раз место самолета автоматически уточняется по предыдущему его местоположению, ранее найденной скорости ветра, данным о курсе и воздушной скорости. При подходе к цели по данным о положении самолета и цели, данным о ветре машина определяет момент сброса бомб и выполняет автоматическое сбрасывание.

«Диджитак», как указывается в печати, способна последовательно выводить бомбардировщик на несколько целей. Общий вес этой машины составляет 110 кг. Она состоит из двух блоков. Блок самой электронной машины весит 58 кг.

Облегчить работу экипажей бомбардировщиков в воздухе электронные вычислительные машины могут и косвенным путем. С их помощью может производиться большое число расчетов, необходимых при подготовке к бомбардировочной операции. На основе таких машин уже сейчас, как указывалось в зарубежной печати, созданы совершенные тренажеры, облегчающие подготовку экипажей бомбардировщиков. Эти тренажеры позволяют на земле воспроизвести обстановку полета, значительно более приближенную к действительности, чем это удавалось раньше. Электронные вычислительные машины находят широкое применение и в конструкторской практике при проектировании прицелов и других образцов вооружения самолетов.

По мнению зарубежных специалистов, область использования электронных вычислительных устройств с каждым годом будет все более расширяться, и уже в ближайшем десятилетии их применение, в частности в авиации, может достичь значительных масштабов. Об этом говорят исключительно высокие темпы развития радиоэлектроники и других смежных с ней областей науки и техники. При этом, разумеется, не может быть и речи о полной замене человека машиной. Как бы велики ни были возможности электронных вычислительных машин, они всегда останутся вспомогательным средством, не заменяющим творческого процесса мышления, а лишь повышающим в колоссальных размерах его производительность.

В зарубежной литературе отмечается, что автоматические устройства для производства прицельного бомбометания еще только начинают развиваться. Поэтому на современных боевых самолетах можно встретиться главным образом с обычными прицелами, которые были описаны в предыдущих разделах.




РЕАКТИВНОЕ ВООРУЖЕНИЕ САМОЛЕТОВ


Неуправляемые реактивные снаряды

Возросшие скорости и высоты полета современных самолетов сильно усложняют воздушный бой между самолетами-истребителями и бомбардировщиками. Время, в течение которого летчик-истребитель может вести прицеливание, стало ничтожно малым, а возможность повторной атаки цели практически почти исключена. Мощное оборонительное вооружение бомбардировщика заставляет истребитель вести огонь с больших дальностей, что, естественно, снижает эффективность стрельбы.

Стремясь и в этих условиях достичь надежного поражения цели пушечным вооружением истребителей, конструкторы создали совершенное прицельное оборудование, которое позволяет вести стрельбу с больших дальностей и в любых условиях (ночью, во время тумана и снегопада). Значительно содействуют решению боевых задач и разработанные в настоящее время различные системы вывода истребителя в исходное положение для атаки.

Однако наряду с совершенствованием средств нападения непрерывно развиваются и средства защиты. Возросшие возможности авиационной промышленности позволяют значительно повысить прочность самолетов, уменьшить их уязвимость от артиллерийского огня, что в свою очередь заставляет конструкторов увеличивать калибр пушек, устанавливаемых на самолеты-истребители, совершенствовать боеприпасы оружия. Но бесконечно увеличивать калибр пушек на самолете нельзя, так как это влечет за собой непомерное увеличение веса артиллерийских установок, а следовательно, и веса самолетов, что недопустимо. Поэтому конструкторы изыскивают иные пути повышения эффективности поражения авиацией воздушных и наземных целей. Один из таких путей состоит в вооружении самолетов неуправляемыми реактивными снарядами.

Вооружение самолетов неуправляемыми реактивными снарядами не вызывает особых затруднений: установки для стрельбы ими имеют небольшой вес; сила же отдачи при стрельбе в этом случае практически отсутствует. Боевые части реактивных снарядов могут быть сделаны весьма мощными, обеспечивающими разрушение даже самого прочного по конструкции самолета, например тяжелого бомбардировщика. Но при всех этих положительных качествах неуправляемые реактивные снаряды имеют существенный недостаток: вероятность попадания в цель ими невелика из-за большого рассеивания. Это долгое время затрудняло их использование в авиации, особенно для стрельбы с самолетов по самолетам.

Из всего многообразного вооружения самолетов реактивное оружие имеет самую короткую историю. В авиации оно появилось только в 30-х годах нашего века, когда другие виды авиационного вооружения (стрелковое, бомбардировочное) уже достигли значительного совершенства. Однако это не помешало реактивному оружию занять одно из важных мест в авиационном вооружении.

Конструкция неуправляемого реактивного снаряда несложна. Снаряд состоит в основном из трех частей: головной боевой части, двигателя и стабилизатора (рис. 42). Головная боевая часть изготовляется из стали; она снаряжается тринитротолуолом и имеет либо головной (ударного или дистанционного типа), либо донный взрыватель. Характерный признак реактивного снаряда — наличие реактивного двигателя, сообщающего ему необходимую скорость в полете. Конструкция такого двигателя в зависимости от используемого для его работы топлива может быть различной, но принцип работы у всех двигателей реактивных снарядов одинаков: сила, необходимая для движения снаряда в воздухе, так называемая сила тяги, образуется за счет реакции струи газов, выбрасываемой через отверстие специальной формы — реактивное сопло.

Рис. 42. Общий вид реактивного неуправляемого снаряда и устройство порохового реактивного двигателя

Для уяснения того, как создается сила тяги реактивного двигателя снаряда, представим себе следующую картину. В металлический цилиндр, закрытый со стороны одного основания и открытый с другого, помещена шашка из прессованного пороха. Если зажечь эту шашку, образующиеся при горении газы, расширяясь, будут равномерно давить во все стороны. Давление на боковые стенки цилиндра будет при этом взаимно уравновешиваться; давление же на его основание — нет, так как с одной стороны газы имеют свободный выход. Это неуравновешенное давление газов будет толкать цилиндр в сторону, противоположную направлению истечения газов.

Здесь происходит то же, что и при выстреле из пушки: снаряд летит вперед, а сама пушка откатывается назад.

Сила, с которой газы давят на дно цилиндра (а в реактивном двигателе — на дно камеры сгорания), носит название силы реакции струи газов, которая тем больше, чем больше скорость истечения газов и чем больше их выходит через отверстие (в реактивном двигателе — через сопло) в единицу времени.

На таком же принципе работают все реактивные двигатели. Каждый из них имеет камеру сгорания, в которой создается необходимое давление газов, и сопло, через которое газы вырываются наружу, заставляя двигатель, а вместе с ним и весь снаряд двигаться в пространстве. Разница в устройстве реактивных двигателей определяется тем, как и с помощью какого топлива образуется струя газов. В неуправляемых снарядах используют наиболее простые типы реактивных двигателей — пороховые, у которых источником образования газов служит пороховая шашка, но может использоваться и горение какого-либо жидкого горючего (спирта, керосина и т. п.). Кислород, необходимый для горения, у пороховых двигателей входит в состав топлива, у использующих жидкое топливо жидкостно-реактивных двигателей подается из специальных резервуаров; в турбореактивных и прямоточных двигателях для сгорания жидкого топлива используется кислород воздуха.