Оружие будущего:Тайны новейших военных разработок — страница 13 из 51

Уже в 50-х годах это понимали все, и в целях сохранения шаткого равновесия между Востоком и Западом в рамках только-только появившегося космического права было достигнуто несколько соглашений. К ним относятся полный запрет на использование в военных целях Луны и других небесных тел, в том числе запрет на строительство там военных баз, и частичный запрет на использование в военных целях околоземного пространства.

Постепенно акцент в футуристических прогнозах и теоретических разработках начал смещаться с наступательного оружия к оборонительному, которое позволило бы защитить от вражеских ракет большой дальности всю территорию страны или хотя бы наиболее важные объекты. Одновременно приобрели реальные очертания программы использования космоса в целях сбора и передачи информации.

Как и в любой другой области военных исследований, одной из главных движущих сил в развитии космических программ явился страх, что «они» уже намного впереди и готовы поставить в многолетнем соревновании двух систем победную точку. Заместитель министра обороны США по вопросам исследований и разработок Р. Деллауэр неоднократно заявлял: «Лучевое оружие разрабатывается в СССР с 60-х годов по десяткам направлений», а «отец» программы СОИ генерал Дж. Абрахамсон на слушаниях в конгрессе по вопросам финансирования военных программ Пентагона на 1985 г. сказал: «В разработках программ, аналогичных СОИ, в СССР участвуют десятки тысяч специалистов». Ходили даже слухи, что Советский Союз не только разработал прототипы лучевого оружия, но и опробовал его во вьетнамо-китайской войне 1979 г.

США тоже имели многочисленные наработки в этой области. Уже в 1972 г. фирма АВКО сообщила о создании лазера, способного резать листы дюралюминия толщиной в несколько сантиметров со скоростью 2–3 метра в минуту.

В конце 70-х годов мощности химических лазеров достигли нескольких мегаватт и появилась практическая возможность их использования в качестве новых видов оружия, предназначенного для «наземного» использования — поражения самолетов и ракет противника в атмосфере, уничтожения маший, бронетранспортеров и кораблей противника. С начала 80-х годов ВВС США ведут разработку мощного лазера воздушного базирования. В 1983 г. во время испытания лазера мощностью 400 киловатт, установленного на одном из самолетов, были сбиты 5 ракет типа «Сайдвиндер» на расстоянии в 5—10 миль. Аналогичный лазер разработан для ВМС США.

Итак, как только позволила технология, американцы начали строить реальные планы создания космических оборонительных систем, и в июне 1983 г. было создано Космическое командование ВМС США.

В январе 1984 г. президент Рейган подписал директиву Совета национальной безопасности о проведении НИОКР по противоракетным системам космического базирования.

В апреле 1984 г. была сформирована дирекция программы «звездных войн» во главе с генералом Дж. Абрахамсоном, а в ноябре того же года в интересах «улучшения планирования» было создано Объединенное космическое командование США во главе с министром обороны К. Уайнбергером.

— Космос — новый театр военных действий, — констатировал генерал-лейтенант Ричард Генри, в ту пору заместитель начальника космического командования.

— Космическая война неизбежна, — пошел еще дальше другой представитель космического командования полковник Э. Валнвеган.

А что же Советский Союз? На первых порах, по крайней мере официально, советское правительство и министерство обороны отнеслись к американским программам достаточно скептически и с осуждением. В 1986 г. группа советских ученых опубликовала свои расчеты, по которым техническая сложность и стоимость полномасштабной программы создания «космического щита» превосходили все мыслимые пределы.

Однако многие на Западе не исключают возможность того, что Михаил Горбачев начал активную борьбу за разрядку с целью высвобождения средств на развитие новых видов вооружений, в том числе космических, в противовес программе СОИ. В 1992 г. президент Российской Федерации Борис Ельцин подписал указ об образовании военно-космических сил РФ. В их задачи входит в основном обеспечение спутниковой связи и ведение космической разведки, но возможно, что лишь развал Советского Союза помешал отечественным специалистам разработать нечто подобное американской программе вывода вооружений на земную орбиту.

Теперь рассмотрим технические аспекты, на которых базировались творцы программы «звездных войн».

Боевые системы электромагнитного излучения

Оптические лазеры

Основной упор в программе СОИ сделан на создание новых видов оружия, использующих в качестве поражающего фактора электромагнитное излучение различных диапазонов спектра: от радиоволн до гамма-излучения. Основным преимуществом такого оружия является практически мгновенное достижение цели, т. к. электромагнитное излучение распространяется со скоростью света. Это позволяет наносить удар неожиданно и быстро с большого расстояния. Кроме того, исчезает необходимость в расчете траектории движения цели с целью упреждения ее движения. Появляется принципиальная возможность уничтожать взлетающие МБР на активном (разгонном) участке их траектории в течение первых 5 минут после старта. Именно поэтому лазерным оружием предполагалось оснастить первый эшелон системы ПРО.

Разрушающее воздействие оптического лазерного излучения основано прежде всего на тепловом нагреве ракет (прожигание топливных баков, электроники и систем управления) и действии ударной («шоковой») волны, которая возникает при попадании на поверхность ракеты импульсного лазерного излучения. В последнем случае ударная волна выводит из строя электронику и системы наведения ракеты, а также может повлечь детонацию взрывчатого вещества в боеголовке. Применение пассивных мер защиты (зеркальных и поглощающих покрытий, экранов и т. д.) значительно снижает поражающее воздействие излучения низких энергий, однако, становятся бесполезными при дальнейшем повышении мощности лазерного излучения.

Идея использовать мощный луч света в качестве оружия восходит еще к Архимеду, но реальную почву эта идея обрела лишь в 1961 г. с появлением первых лазеров. В 1967 г. был разработан первый газодинамический лазер, который продемонстрировал реальность возможности использования лазеров как оружия. Основными его элементами являются: камера сгорания, в которой образуется горячий газ; система сверхзвуковых сопел, после прохождения которых газ, быстро расширяясь, охлаждается и переходит в состояние с инверсной населенностью энергетических уровней; оптическая полость, где и происходит генерация лазерного излучения. В этой полости перпендикулярно потоку газа расположены два плоских зеркала, образующих оптический резонатор. Для пропускания излучения из полости диаметр одного из зеркал чуть меньше, чем у другого.

Близки по конструкции к газодинамическому лазеру химический и электроразрядный: в них также через объем резонатора с большой скоростью прокачивается возбужденная рабочая смесь, только источником их возбуждения является соответственно химическая реакция или электрический разряд. Наиболее подходящим для поражения боеголовок в космическом пространстве считается химический лазер на реакции водорода с фтором. Если же в этом лазере вместо водорода использовать его тяжелый изотоп дейтерий, то излучение будет иметь длину волны не 2,7 мкм, а 3,8 мкм, т. е. попадет в «окно прозрачности» земной атмосферы (3,6–4 мкм) и сможет почти беспрепятственно достигать земной поверхности.

Сложную задачу представляет фокусировка лазерного луча на цель.

Опытная установка для тестирования лазеров в вакууме


С точки зрения фокусировки луча более предпочтительными являются оптические и ультрафиолетовые (УФ) лазеры. Наиболее перспективными среди них считают эксимерные лазеры на молекулах фтористого аргона и фтористого криптона. Эти молекулы-эксимеры могут существовать только в возбужденном состоянии: после излучения фотона они разрушаются. Излучение таких лазеров лежит в диапазоне от 2000 до 3000 ангстрем и поэтому земная атмосфера для него непрозрачна. Внешний источник энергии у эксимерных лазеров — электрический разряд, пучок ускоренных электронов, поток нейтронов от ядерного реактора или, возможно, от ядерного взрыва.

Самым крупным недостатком газовых лазеров всех типов является большое выделение тепла в их рабочем объеме. Это ограничивает повышение мощности на единицу массы таких лазеров. Перспективным в этом отношении считается лазер на свободных электронах, в котором усиление излучения происходит за счет его взаимодействия с пучком электронов, движущимся в периодическом магнитном поле. Можно также использовать такие лазеры как усилители мощности другого лазера, самостоятельных генераторов и умножителей частоты. Поскольку электроны летят в вакууме, не происходит разогрева прибора, как у обычных лазеров. Большим достоинством является также то, что частота генерации у лазера на свободных электронах может перестраиваться в широком спектральном диапазоне от миллиметровой до УФ-области, что делает защиту от излучения большой проблемой.

Идея эта не нова и давно используется в радиотехнике для создания мощных генераторов и усилителей сверхвысокочастотного (СВЧ) диапазона. Относительно высокий ожидаемый коэффициент полезного действия этих усилителей в оптическом и инфракрасном диапазонах длин волн весьма высок — до 30–40 процентов, что по данным американских источников еще до конца столетия позволит получить лазерное излучение мощностью до 100 мегаватт.

Стремление использовать в лазерном оружии коротковолновое излучение связано с тем, что оно хорошо поглощается любыми материалами. Например, титановое покрытие почти полностью отражает ИК-излучение, но поглощает ультрафиолет. Однако УФ-лазеры тяжелы и требуют громоздких источников энергии.

Рентгеновские лазеры

Особую роль в планах «звездных войн» играет проект рентгеновского лазера с накачкой энергией от ядерного взрыва. Вообще идея рентгеновских и гамма-лазеров давно привлекает внимание ученых. Применение таких лазеров даст человечеству большие возможности: как источники когерентных волн они приведут к рождению рентгеновской или гамма-голографии (молекулярной голографии), позволят расшифровать объемную структуру молекул и атомов. Возможность воздействовать на атомы и их ядра строго дозированными порциями энергии — квантами — позволит изучать и направленным образом изменять структуру атомных ядер. Тщательно подобрав частоту излучения, можно раскачивать и разрывать определенные связи в ядре и осуществлять таким образом самые экзотические ядерные превращения. Ту роль, которую играют сейчас оптические лазеры в области управления химическими реакциями, рентгеновские и гамма-лазеры будут играть в сфере ядерных превращений. Впрочем, они найдут применение и в хирургии, и в спутниковой связи, и в других областях народного хозяйства. Поэтому уже более 20 лет продолжаются попытки создать рентгеновский лазер, используя, разумеется, не разрушительную энергию ядерного взрыва, а контролируемые источники (например, обычные оптические лазеры).

В 1984 г. в США был произведен эксперимент по генерации лазерного рентгеновского излучения в газовой среде с использованием в качестве источника накачки мощного двухлучевого оптического лазера «Наветт» (Ливерморская национальная лаборатория), каждый луч которого имел плотность мощности 5 1013 Вт/см2 в импульсе длительностью 4,5 • 10-10 с.

Схема рентгеновского лазера: 1. Следящий телескоп. 2. Кожух. 3. Наведение и двигательная установка. 4. Лазерные стержни. 5. Ядерная бомба.


В фокусе лазера помещалась мишень — тончайшая пленка размером 0,1 х 1,1 см из селена или иттрия. Луч испарял мишень, создавая плазму из ионов этих металлов. Столкновения с электронами в плазме вызывали возбуждение ионов, которое приводило к вынужденному излучению на частотах около 200 ангстрем. Наличие лазерного эффекта подтверждалось тем, что излучение, скажем, селеновой плазмы по интенсивности превышало примерно в 700 раз ожидаемое ее спонтанное излучение. По сообщению специалистов Ливерморской группы, планируется дальнейшее продвижение в область жесткого рентгена: так, излучение неоноподобных ионов молибдена даст лазерный эффект на 100 ангстрем, а использование новых лазеров накачки позволит уменьшить длину волны излучения до 50 ангстрем.

В том же 1984 г. сотрудникам Принстонской лаборатории физики плазмы (США) с помощью мощного инфракрасного лазера на молекулах СО2 удалось получить лазерный эффект в углеродной плазме на волне 182 ангстрем. Их лазер накачки имел импульсную мощность порядка 10–20 гигаватт. Его пучок фокусировался в пятно диаметром 0,2–0,4 мм, что позволяло достигать плотности мощности 1013 Вт/см2. Руководитель Принстонской группы С. Сакьюэр также надеется продвинуться в область более коротких волн, используя литиеподобные ионы неона. Интересно, что в этих экспериментах впервые использовалось для увеличения коэффициента лазерного усиления рентгеновское зеркало, изготовленное Т. Барби в Стэнфордском университете (США). Это параболическое зеркало с радиусом кривизны 2 м состоит из чередующихся слоев молибдена толщиной 35 ангстрем и кремния толщиной 60 ангстрем. Хотя каждый молибденовый слой довольно слабо отражает рентгеновские лучи, но отраженные от последовательных слоев лучи вкладываются, интерферируют и усиливаются, так что полный коэффициент отражения такого многослойного зеркала составляет 70 %.

В 1986 г., полностью ионизировав в фокусе мощного лазера атомы фтора, исследователи получили лазерное излучение с длиной волны 80 ангстрем.

Результаты эксперимента, в ходе которого списанная ракета-носитель «Титан» была уничтожена лучом лазера


Дальнейшее существенное уменьшение длины волны (а оно необходимо для уменьшения расходимости пучка у боевого лазера) требует таких огромных плотностей энергии накачки, которые достигаются только при взрывах ядерных зарядов. Работы в этом направлении с целью создать боевой рентгеновский лазер ведутся в Ливерморской лаборатории под руководством «отца американской водородной бомбы» Эдуарда Теллера. Испытания проводятся во время подземных ядерных взрывов на полигоне в штате Невада. В 1981 г. было опубликовано неофициальное сообщение об измеренных во время эксперимента характеристиках лазерного излучения: длина волны 14 ангстрем, длительность импульса >10-9 с, энергия в импульсе около 100 кДж. Детально конструкция лазера не описывалась, но известно, что его рабочим телом являются тонкие металлические стержни.

Для поражения межконтинентальной баллистической ракеты, т. е. для получения плотности энергии, скажем, 10 кДж/см2 на расстоянии 1000 км при расходимости луча 10-5, в импульсе такого лазера должна быть энергия около 1010 Дж. При внутреннем КПД рентгеновского лазера, составляющем по довольно оптимистичным оценкам 10 % и при расстоянии стержня (точнее было бы называть его струной) от ядерного заряда около 1 м мощность заряда должна быть примерно 1015 Дж, или 200 кт тротилового эквивалента. По другим расчетам, для обеспечения дальности поражения МБР на расстоянии 2000 км потребуется ядерный заряд мощностью 50 кт, а число стержней составит 1015. Не исключена также возможность создания некоего концентратора энергии взрыва на одной струне, используя эффект отражения рентгеновских лучей от кристаллов при косом падении.

По-видимому, принципиальных ограничений на создание рентгеновского лазера с ядерной накачкой нет. Он обещает стать очень компактным прибором (с вероятной массой около 1 т), доступным для вывода в космос одной ракетой, что сделает его малоуязвимым оружием.

Микроволновое оружие