Оружие будущего:Тайны новейших военных разработок — страница 22 из 51

3. Обычные турбореактивные двигатели сконструированы так, что радар может «видеть» имеющий большую площадь отражения компрессор, который хорошо отражает излучение. По новой технологии перед компрессором устанавливается специальный диффузор, острая вершина которого отражает излучение внутрь корпуса двигателя и таким образом гасит его.

4. Двигатель плоской формы создает реактивный факел с широким углом расхождения раскаленных газов, что рассеивает поток тепла и снижает степень заметности в инфракрасном диапазоне.

5. Оба двигателя самолета оснащаются шумоподавляющими кожухами, а также системой принудительного охлаждения, которая снижает инфракрасные выбросы. Часть холодного воздуха, попадающего через воздухозаборники, подается прямо в зону выхлопа и, смешиваясь с горячими реактивными газами, охлаждает их.

6. Даже те части самолета, которые должны быть примерно вертикальными, такие как кресло пилота, имеют гофрированную форму, чтобы рассеивать энергию радара.

7. V-образный хвост (его еще называют «бабочка») заменяет собой две горизонтальные и одну вертикальную плоскости традиционного хвоста, что также снижает заметность.


Но хотя новые американские самолеты и называют в прессе «невидимками», это не более чем гипербола. Они, в принципе, могут быть обнаружены современным радиолокационным оборудованием. Большое преимущество технологии «стелс» состоит, однако, в том, что ракеты с головками самонаведения и другие автоматизированные средства противовоздушной борьбы не могут зафиксировать такой самолет в качестве цели с достаточной точностью и, как правило, промахиваются.

«Стелс»-технология распространяется и на другие виды военной техники. Например, недавно во время визита президента США в штаб-квартиру стратегического авиационного командования были представлены первые официальные фотографии перспективной крылатой ракеты класса «воздух — поверхность» Дженерал Дайнэмикс AGM-129A АСМ с низким уровнем демаскирующих признаков.

Разработана она, как известно, по программе «стелс» и предназначена для вооружения бомбардировщиков В-52Н, В-1В и В-2. Крылатая ракета АСМ близка по размерам к крылатой ракете Боинг AGM-86B ALCM.

Антенна системы наведения смонтирована в носовой части.

Снижение демаскирующих признаков обеспечивается формой крылатой ракеты с близким к прямоугольному сечением и сильно заостренной носовой частью, а также применением в конструкции радиопоглощающих материалов и покрытий. Все это нацелено на то, чтобы значительно осложнить поиск крылатой ракеты истребителями-перехватчиками противника, оснащенными РЛС обзора в нижней полусфере. При этом следует отметить, что воздухозаборник, выхлопное сопло и хвостовые стабилизаторы экранируются сверху фюзеляжем крылатой ракеты.

Крылатая ракета АСМ имеет навигационную систему с ориентацией по карте рельефа местности, подобную системе ракеты ALCM с большим объемом памяти.

Детальные характеристики крылатой ракеты АСМ строго засекречены. Есть вероятность того, что она имеет ядерный боезаряд мощностью 200 кт. Дальность ее полета превышает 2500–2700 км. По точности крылатая ракета АСМ должна превосходить крылатые ракеты, состоящие на вооружении. Крейсерские скорости крылатой ракеты АСМ и ALCM примерно равны и соответствуют М=0,9.

Таковы точные или предполагаемые технические характеристики КР АСМ. Что касается ее испытаний, то без отделения от самолета-носителя они начались в начале марта 1989 г., когда самолет В-52Н (авиабаза Эдварде, штат Калифорния), имевший на подкрыльном пилоне одну крылатую ракету, поднялся в воздух и совершил первый испытательный полет, пролетев над полигоном Коулд — Лейк в канадской провинции Альберта.

Дирижабли возвращаются

Многие военные специалисты сейчас связывают большие надежды с выполнением обширного круга боевых задач на широких океанских просторах с дирижаблями. По какой же причине возродился интерес к этому виду летательных аппаратов, который был абсолютно утрачен после ряда случившихся в 30-х годах нашего столетия катастроф?

Для этого появился ряд технических и социально-экономических причин. За прошедшие годы в технике появились новые возможности и материалы, которые не использовались на «Графе Цеппелине» и других дирижаблях первой половины XX века. К ним относятся легкие, но прочные конструкционные материалы (пластмассы, синтетические пленки и другие полимеры), компьютеры, невоспламеняющийся гелий, резкое снижение стоимости которого позволяет использовать его вместо опасного водорода, применявшегося в довоенные годы, когда гелий был очень дорог.

Существуют также социально-экономические перемены, выразившиеся в резко возросшей стоимости горючего. Все большее и большее внимание привлекает к себе возможность перевозить по воздуху большие грузы при малом расходе топлива. Использование дирижаблей может помочь реализовать многие преимущества воздушных перевозок при относительно небольшом увеличении времени доставки грузов в места их назначения и сравнительно низких затратах.

Единственной серьезной причиной, мешающей более быстрому развитию и применению дирижаблей, в настоящее время является то, что для эффективного их использования требуются большие средства на создание причальных устройств и погрузочно-разгрузочного оборудования, поскольку существующие аэропорты не подходят для удобной и тем более безопасной работы дирижаблей.

Модель одного из предлагаемых проектов дирижаблей


В разных странах уже разработан ряд проектов дирижаблей. Например, как сообщает печать, в ФРГ намечают постройку дирижабля мягкой конструкции. Большой интерес к дирижаблям проявляется в США, где ведутся крупные исследования и изучаются вопросы практической реализации проблемы изготовления и использования дирижаблей. Фирма «Боинг» планирует создание комбинированного аппарата, в котором подъемную силу примерно на 80 % будет создавать наполненная гелием конструкция и на 20 % — винты.

ВМС США выразили заинтересованность в дирижабле для доставки грузов на корабли в море и с кораблей на берег. С этой целью в Соединенных Штатах создан и прошел испытания пока с дистанционным управлением дирижабль, названный аэрокраном, который имеет четыре небольших винта переменного шага. Среди других американских проектов можно назвать дирижабль «Стар», работающий на подогретом воздухе. Большой интерес специалистов привлек проект дирижабля «Дайнэаршип». Он имеет форму в виде выпуклого треугольника, заполненного газом, и снабжен несущими винтами с наклоном оси вращения. В этом дирижабле плавучесть сочетается с подъемной силой винтов и аэродинамической силой. В настоящее время проводятся работы по дальнейшему развитию этого проекта, в первую очередь для материально-технического обеспечения кораблей в море, отдаленных объектов, для прокладки трубопроводов и других аналогичных задач.

Наряду с этим рассматриваются и многие сугубо военные аспекты дирижаблестроения. Здесь усилия направлены на создание таких летательных аппаратов, которые могли бы успешно вести боевые действия самостоятельно или принимать в них участие в составе флотов на океанских театрах военных действий.

По одному из предложенных проектов воздухоплавательный аппарат может иметь атомную силовую установку, длину корпуса примерно 300 м, диаметр 75 м. Несмотря на то что его объем составит свыше 700 тыс. м3, он сможет летать со скоростью 100 узлов при мощности двигателей не более 25 тыс. л.с. В движение этот дирижабль будут приводить большие медленно вращающиеся хвостовые соосные воздушные винты противоположного вращения.

Полезная нагрузка этого летательного аппарата будет достигать 320 т. Она может включать разнообразные боевые средства, в числе которых противолодочные самолеты с вертикальными взлетом и посадкой, ракеты «воздух — воздух» и «воздух — поверхность» как тактическое оружие, противолодочные радиогидроакустические буи, радиолокаторы, буксируемые гидролокаторы, средства радиоразведки и РЭБ, а также аппаратура для обработки информации.

Благодаря устойчивости в полете и отсутствию вибраций на борту дирижабля могут быть созданы благоприятные условия для работы чувствительной электронной аппаратуры. Способность этого летательного аппарата нести на своем корпусе антенны диаметром 60 м и более обещает сделать его воздушным противолодочным средством с возможностями, выходящими за пределы всего, что когда-либо было достигнуто в этой области. Сейчас специалистов по антеннам не удовлетворяют существующие ограничения частот, коэффициенты усиления и разрешающая способность, обусловленные размерами параболических антенн, которые могут нести самолеты. Используя дирижабль, можно реализовать целую серию новых размеров, частот и рабочих характеристик антенны.

В настоящее время главным средством обнаружения подводного противника является гидроакустическая станция (ГАС). Однако очень часто ее работа затрудняется шумами от корпуса корабля и винтов, особенно в режиме шумопеленгования. Буксируемая дирижаблем ГАС не будет испытывать таких помех и способна стать весьма эффективным средством при скрытном слежении за подводными лодками противника. Акустическая антенна, буксируемая дирижаблем, так же как и его радиоантенны, может иметь огромные размеры и высокие рабочие характеристики.

Имея высокие показатели полезной нагрузки, дирижабль сможет также нести крупные противолодочные радиогидроакустические буи и устанавливать их с большой точностью на заранее выбранных позициях, а после их установки, патрулируя поблизости, вести контроль за местонахождением, количеством и функционированием установленных буев.

Оборудованный средствами для поиска, обнаружения и сопровождения воздушных целей дирижабль сможет действовать в отдаленных районах океана, заменив собой самолеты в качестве основного элемента линии дальнего радиолокационного обнаружения. При этом обеспечить контроль за отдаленными районами Мирового океана ему позволит большая дальность и продолжительность полета.