В 1937 году последовал новый арест. После двухлетнего следствия его опять-таки приговорили к 10 годам заключения. И снова отправили в особое техническое бюро, где перед войной собрался весь цвет отечественных специалистов в области производства порохов в лице А.Э. Спориуса, А.Д. Артющенко, Д.М. Равича, Ф.М. Хритинина, С.А. Ильюшенко и других.
Саму же Л.Б. Кизнер, с воспоминаний которой начата эта главка, после защиты диплома в 1939 году направили в Реактивный научно-исследовательский институт, позднее переименованный в НИИ-3.
С началом Великой Отечественной войны предприятия по производству баллиститных порохов пришлось срочно эвакуировать на восток, и какое-то время порохов производилось столь мало, что «катюши» приходилось с линии фронта отводить в тыл, поскольку для них не было боеприпасов.
Государственный Комитет Обороны предложил НИИ-3 проработать вопрос о применении в двигателях снарядов шашек из пироксилинового пороха, которые рекомендовались ранее для морских пушек. Но испытания выявили то, что и следовало ожидать: заряды горели в несколько приемов.
Тогда Л.Б. Кизнер пришло в голову интересное решение. Со времен учебы в институте ей запала в голову идея о сокращении объема коллоида с вытеснением летучего растворителя. Л.Б. Кизнер подумала: нельзя ли прибавить в качестве одного из компонентов смеси спиртовой раствор канифоли, который при технологических операциях будет вытесняться с внутренних слоев пороховой шашки вместе с растворителями? При этом канифоль, как нелетучее вещество, останется в наружном слое шашки. Вследствие этого произойдет перераспределение компонентов за счет осуществления так называемого процесса автофлегматизации и может получиться порох с одинаковым распределением компонентов по толщине свода «шашек».
Пусковая установка РС-132 на гусеничном тракторе СТ 3-5-НАТИ.
По этому предложению была быстро составлена новая рецептура, но когда Л.Б. Кизнер отправилась в НИИ-6 получать санкцию пороховщиков, ее встретили недружелюбно. По мнению Б.П. Жукова и других специалистов, флегматизацию больших «шашек» таким образом осуществить не удастся. И точка!
Тогда в поисках поддержки Кизнер рискнула обратиться за советом к А.С. Бакаеву и его коллегам, несмотря на то что они сидели в тюрьме. Только она знает, каких трудов ей стоило добиться разрешения на посещение тюремного ОТБ-40 при НКВД, находившемся в Казани. Но когда она объяснила заключенным ученым свою идею, те ее дружно поддержали и даже усовершенствовали состав. Так, к примеру, Н.П. Путимцев предложил прибавить к пороховой массе, помимо канифоли, большой процент калийной селитры. Поэтому этот порох именовался в дальнейшем «ПС» (пироксилин-селитренный).
Ну а что же Жуков? Поняв свои заблуждения, он не счел возможным извиниться. А воспользовался тем, что в военное время никому и в голову не приходило заниматься оформлением авторских свидетельств, патентов и прочей документации, и… приписал себе авторство на рецептуру «ПС».
Аналогичный подарок, кстати, был сделан и американцам. Когда к ним попала рецептура уникального по своим характеристикам советского пороха, они воспользовались нежданным подарком сполна. Американцы не только за хорошие деньги исполнили свой союзнический долг, но и использовали полученные знания в дальнейшем при создании своих твердотопливных ракет.
Между тем у нас все шло не так, как хотелось бы. Когда в 1943 году заработал завод в Перми и для реактивных снарядов «катюш» снова стал применяться прежний порох, случилось очередное ЧП — снаряды стали взрываться на пусковых устройствах. Над главным технологом завода и его помощниками нависла реальная угроза ареста.
В это время Кизнер работала под началом инженера Ф.Я. Якайтиса в филиале НИИ-3 в Свердловске. Опять-таки ей, а вовсе не Жданову, поручили разобраться с непонятным явлением. Прибывший военпред предоставил 100 двигателей от снарядов М-31. Разобрав несколько двигателей, Кизнер отыскала причину неполадок. На ракеты по-прежнему ставился двигатель, рассчитанный на низкокалорийный порох. Когда же возобновили применение баллиститных порохов (его калорийность выше), прежние колосниковые диафрагмы для этого уже не годились.
Кизнер начертила нужную диафрагму, ее тут же изготовили и испытали. Через сорок восемь часов снаряды М-31 с исправлениями уже пошли потоком…
А спустя три года, в период подготовки к летнему наступлению, солдаты 2-го Белорусского фронта на основе реактивного снаряда сконструировали так называемую летающую торпеду. Для этого брался снаряд М-13, вставлялся в деревянную бочку обтекаемой формы. Внутрь бочки заливали расплавленный тол, для устойчивости приделывали деревянный стабилизатор и все это устройство для прочности крепили железными обручами. Запуск производили из ящика с металлическими полозьями-направляющими, врытого в землю.
Когда командованию фронта была продемонстрирована стрельба торпедами, оно тут же приказало изготовить их в количестве 2 тысяч штук. При дальности 1400 м торпеда давала взрыв такой силы, что в плотном суглинистом грунте получалась воронка диаметром 6 метров и глубиной 3 метра. Эти необычные творения солдатской смекалки, по мнению специалистов, ускорили прорыв вражеской обороны.
Не лишне будет вспомнить, наверное, и о том, что еще накануне войны лейтенант Г. Терновский выдвинул предложение о вооружении реактивными установками катеров и специальных судов для огневой поддержки морских десантов. И в первые же месяцы войны завод «Компрессор» получил заказ флота на создание реактивной установки для бронекатеров. Предназначенные для пуска 82-мм снарядов, такие установки в первую очередь были смонтированы на бронекатерах Волжской речной флотилии, сыгравшей такую важную и героическую роль в Сталинградской битве[13].
Использовали реактивные установки, а также одиночные снаряды и в уличных боях. Так, в последние месяцы войны, когда советские наступающие части вели тяжелые уличные бои в крупных городах, наши солдаты придумали свой вариант фаустпатрона. Одиночные реактивные снаряды прямо в фабричной упаковке устанавливались в окнах или проломах зданий, находившихся напротив штурмуемого объекта, а затем производился пуск…
Таким образом сбылось предвидение одного из родоначальников российской реактивной артиллерии Н. Вроченского. Еще в 1863 году в «Карманной справочной книжке для артиллерийских офицеров» в числе прочих достоинств боевых ракет он упоминал следующие:
1. «Удобство перевозки ракет через реки на судах ничтожных размеров, с возможностью безопасного действия с них во время самой переправы».
2. «С занятием домов во время битвы окна всякого этажа, крыши и балконы могут удобно служить боевыми позициями».
Наследники «катюши». После Второй мировой войны империалистические страны начали, как известно, гонку вооружений. Командование НАТО в основу своей стратегии положило оснащение войск ракетами всех видов, в том числе снабженных ядерными боеголовками.
Аналогично и у нас в послевоенные годы были созданы боевые ракетные установки нового поколения — БМ-14, БМ-24, БМД-20 и ряд других. Первая из них предназначалась для залповой стрельбы шестнадцатью 140-мм турбореактивными снарядами на дистанцию 10 км. Более мощная БМ-24 вела огонь примерно на такое же расстояние 240-мм фугасными турбореактивными снарядами массой по 112 кг.
А установка БМ-21 предназначена для стрельбы мощными осколочно-фугасными снарядами, благодаря чему может выполнять в бою самые разнообразные задачи — уничтожать живую силу и боевую технику противника, подавлять артиллерийские и минометные батареи, разрушать полевые укрепления…
Одно из важных боевых качеств — скорострельность установки. Она значительно больше, чем у неавтоматического артиллерийского орудия. Возьмем, к примеру, гаубицу калибра 122 мм. Ее скорострельность — один выстрел за 10 с. А боевая машина может за 20 с выпустить 40 реактивных снарядов, т. е. сделать два выстрела в секунду.
Интересна конструкция направляющих данной установки. Здесь нет балок двутаврового сечения, как это было у реактивной установки БМ-13 — знаменитой «катюши» времен Великой Отечественной войны. Каждая направляющая напоминает минометный ствол, то есть трубу. Калибр трубы 122,4 мм, длина 3 м. Четыре ряда по 10 труб в каждом составляют пакет, который крепится вместе с прицельным приспособлением к так называемой люльке — особой конструкции, которая способна скомпенсировать качания машины, неизбежно возникающие при залпе.
Кроме того, во время движения по траектории снаряд теперь вращался вокруг своей продольной оси. Таким образом повышается точность стрельбы. Реактивный снаряд будет устойчив в полете и рассеивание станет меньше.
Конструкторы предложили такое решение. В трубе сделан винтовой П-образный паз, по которому скользит штифт снаряда, когда тот начинает движение под действием двигателя. Так снаряду придается начальное вращение. Затем в полете оно поддерживается на траектории с помощью лопастей стабилизатора, которые специально установлены под небольшим углом к продольной оси снаряда.
Мирное применение. Вполне возможно, что вскоре такая необычная команда прозвучит для расчета тульской системы «Град» или еще более совершенной — «Тайфун». Но только на английском языке и в местах, достаточно удаленных от оружейной столицы России. Потому как именно посольство Австралии стало первым официальным органом, проявившим интерес к побочному, прикладному, изобретению тульских оборонщиков.
Суть его в том, что «градовские» снаряды, начиненные аэрозолью или особым порошком, выделяющим при разложении углекислоту, могут с поразительным эффектом «накрывать» огромные массивы лесных пожаров. Минутный залп «Града» — и площадь огня в 15 кв. км может быть нейтрализована.
Надо ли говорить, какую ценность представляет это сообщение для государств, чьи территории наиболее подвержены опустошительным ландшафтным пожарам. Высокопоставленный чиновник посольства Австралии в России на сделанный туляками запрос поспешил со встречным заявлением, что его правител