Простейшие формы жизни – у них есть общее название «прокариоты» – самые древние на планете. Бактерия в поперечнике всего несколько микрометров. При этом бактерии могут быть самой разной формы в диапазоне от шаров и трубочек до палочек и спиралей, которые иногда передвигаются при помощи жгутиков, похожих на хлысты. Словом, они весьма разнообразны. У обитателей другого древнего домена – столь же миниатюрных архей – нам впору поучиться крайнему смирению[137]. До конца 1970 годов мы даже не считали их отдельной формой жизни, а полагали, что это всего лишь разновидность шустрых бактерий. Но оказалось, что это не так. У них принципиально иная клеточная структура, и даже жгутики у них устроены совсем иначе, чем у бактерий. Кроме того, они склонны жить за счет «подножного корма» в самых разных средах. Для этого они потребляют простое химическое сырье – и эта черта лишь подтверждает гипотезу, что они необычайно древние и восходят к тем далеким временам, когда питаться было нечем, кроме неорганических веществ.
Легко решить, будто подобные формы жизни столь же примитивны, сколь и древни. Напротив! Каждое крошечное отдельное существо – это невероятный шедевр природной механики. Даже их на первый взгляд простые хвостики-жгутики приводятся в движение хитроумным молекулярным эквивалентом электромотора, который вращается со скоростью сотен оборотов в минуту. Как мы вскоре убедимся, их способности этим далеко не ограничиваются.
Кроме того, архей и бактерий очень много. По нынешним оценкам планета Земля служит домом более чем для миллиона триллионов триллионов[138] (10) одноклеточных организмов. Их генетическое разнообразие просто поразительно – нам известно по меньшей мере десять миллионов различных видов, а скорее всего, их гораздо больше. За последние 30–40 лет мы обнаружили, что многие микробы прекрасно чувствуют себя в условиях, которые мы вынести не могли бы – при очень высокой температуре, давлении, в агрессивных и ядовитых химических средах, а иногда в местах, где экстремальны и температура, и давление, и химическая среда. Подобная выносливость позволяет микроскопической жизни занимать практически любые уголки планеты. Эти организмы не просто далеко опережают все другие формы жизни на Земле по численности и разнообразию, но и составляют подавляющее большинство биомассы на планете.
В основном эти живые существа обитают даже не на поверхности. Скажем, морская вода, особенно верхние слои океанов, полна бактерий. Если мы заглянем глубже, то обнаружим, что на камнях и в осадках на океанском дне обитает, по всей видимости, большинство живых существ на свете – 70 %. По большей части эти существа живут по отдельности, однако ближе к вулканическим грядам, которые рассекают океаны и практически непрерывной цепью длиной в 60 000 километров опоясывают планету, организмы образуют своего рода оазисы бурной жизни. На континентальных массах суши живые организмы обитают и в толще почвы, и во льду, и в микроскопической перепутанице мелких трещин, пронизывающей земную кору. Следы присутствия микробов обнаружены даже в базальтовом вулканическом стекле на склонах действующих вулканов – там микроорганизмы питаются скальными породами и потребляют химическое сырье.
Если бы всего сто лет назад кого-нибудь спросили, какие живые существа составляют на Земле большинство, в ответе, скорее всего, упоминались бы растения или насекомые – и уж точно не бактерии, точно не миллионы триллионов триллионов одноклеточных, которые, как мы теперь знаем, по большей части таятся от нас под поверхностью планеты. Однако эта процветающая и вездесущая популяция – залог нашего существования и ключ к ответу на вопрос о нашем значении в мироздании. Именно бактерии и археи таят в себе разгадку тайны жизни на Земле, именно они создают базу для сбора и хранения энергии и материалов, строительства биологических структур и обеспечения самых что ни на есть поразительных химических трюков и фокусов. В сущности, все отличительные черты нашего мира, все то, что первым делом бросается в глаза, от атмосферы и океанов до химии почвы и скал – бессознательно и блистательно создали все те же обитатели микромира за последние четыре миллиарда лет.
Чтобы оценить, в какой степени встроена жизнь в организм нашей планеты в целом, нужно несколько пересмотреть свои воззрения. Лично у меня самый серьезный перелом в отношении к природе жизни на Земле произошел в 2008 году – до этого мои представления были до смешного узки[139]. Это произошло, когда я прочитал статью в журнале «Science», которую написали биолог и океанограф Пол Фалковски и морские микробиологи Том Фенчел и Эдвард Делонг. Статья называлась «Микробиологические двигатели, обеспечивающие биохимические циклы Земли» («The Microbial Engines That Drive Earth’s Biogeochemical Cycles») – достаточно прямолинейное и обманчивое название, скрывающее масштабы обсуждаемого вопроса.
Что это за микробиологические двигатели? С механической точки зрения это сложные соединения молекул под названием белки. В старших классах на уроках органической химии мы узнали, что белки, в свою очередь, состоят из цепочек и сложенных конструкций более простых молекул под названием аминокислоты. В биохимии Земли участвуют лишь избранные аминокислоты – их двадцать, и каждая состоит из набора от 10 до 27 атомов углерода, водорода, кислорода, азота и серы. Вот они, основные кирпичики – детальки конструктора «Лего», из которых строятся клетки, а инструкции, по которым надо собирать этот конструктор, записаны в генетических кодах всех живых существ.
Белки, которые жизнь создает из аминокислот, – рабочие лошадки биохимии. Они могут служить катализаторами и возбуждать химические реакции, а могут составляться в более крупные структуры. Если они складываются в так называемые многобелковые комплексы[140], то превращаются в полномасштабные молекулярные машины, хитроумные инженерные творения самой природы, выработанные в результате неустанной селекции и эволюции. Это и в самом деле механизмы, на которых основана любая жизнь. У одноклеточных организмов белки составляют до 50 % сухой массы.
Некоторые подобные белковые структуры стяжали себе звание двигателей, поскольку вовлечены в основные функции обмена веществ, производства полезной химической энергии и синтез новых соединений – то есть в те самые процессы, которые поддерживают жизнь во всех организмах.
Это снова возвращает нас к школьному курсу химии: а на каком топливе работают эти двигатели? В конечном итоге все сводится к движению и передаче двух фундаментальных физических частиц – электронов и протонов. Химия жизни поддерживается обменом и перетеканием заряженных частиц в ходе реакций окисления и восстановления.
Иногда эти реакции происходят сами по себе, если нужные молекулы сближаются на достаточное расстояние при достаточной энергии. Например, при нагреве метан способен перегореть в кислород. Все мы наблюдали эту реакцию в кухне, когда готовили на газу, и в школе на лабораторных работах, когда зажигали бунзеновские горелки. В результате атомы углерода и водорода связываются с кислородом и в процессе теряют электроны. В сущности, само слово «окисление» несколько устарело: в ходе таких реакций атомы на самом деле теряют или передают электроны. А передача заряженных частиц означает, что создается поток энергии, к которому можно подключиться, чтобы подпитывать другие процессы.
Однако не все реакции идут настолько спонтанно, зачастую им требуется дополнительный толчок. Такова жизнь: ее молекулярные двигатели пристраиваются к реакциям, катализируют их, часть энергии забирают на свои цели поддержания жизни, причем зачастую запасают эту энергию в других молекулах, которые переправляют ее в другие участки клетки или клеток организма. Именно так поддерживается жизнь на Земле. И молекулярные двигатели на самом деле не просто пристраиваются к химическим реакциям, они физически собирают химическое топливо и создают условия для того, чтобы эти реакции шли: они обеспечивают обмен веществ.
Однако здесь таится колоссальный подвох. Все подобные химические реакции, подобные передачи электронов или протонов, превращают набор ингредиентов в набор продуктов. Так что если бы у Земли был ограниченный запас сырья и реактивов и она предоставляла его в распоряжение живых организмов, со временем запас истощился бы. Но ведь планета не статична. Бурная геофизическая активность – от вулканов до тектонических сдвигов – перерабатывает органические осадки и их химические составляющие и возвращает их на поверхность, а реакции в атмосфере с участием солнечного света постоянно производят свежее сырье.
Сложность в том, что эти процессы относительно медленные: на то, чтобы заново заполнить химическую кладовую, уходят миллионы лет. Жизнь зародилась по крайней мере 3,5 миллиарда лет назад и сохранилась с тех пор, значит, у нее был еще какой-то источник средств к существованию, пока Земля тащилась себе вперед. И верно. Именно в этом и состояло озарение, которое постигло меня, когда я читал работу Фалковски, Фенчела и Делонга. В их статье объясняется, как молекулярные двигатели жизни в результате эволюции объединились в поразительную взаимосвязанную систему – систему, при помощи которой микроскопические организмы катализируют множество реакций окисления и восстановления во множестве самодостаточных циклов. Иными словами, молекулярные двигатели перезапускают последовательности повторяющихся химических реакций, которые без них шли бы очень медленно или вообще не состоялись бы.
В результате обмена веществ атомы элементов вроде водорода, углерода, азота, кислорода и серы постоянно переходят из одного места в другое, из молекулы в молекулу. Со временем химическая структура земной коры и океанов оказывается глубочайшим образом переработана – и это превращение не было бы возможно в отсутствие жизни. Это и есть биогеохимия. Практически вся среда нашего обитания на Земле – от кислорода, которым мы дышим, до состава почвы у нас под ногами – всего лишь результат уравновешивания всех этих взаимосвязанных, взаимозависимых циклов. Разумеется, мы не отделены от этой системы. Жизнь, подобная нашей, принадлежит к домену эукариотов с большими сложными клетками, которые, очевидно, представляют собой результат различных случаев эндосимбиоза – ассимиляции всевозможной машинерии из более ранних, чисто симбиотических отношений между одноклеточными организмами. Сложноклеточная жизнь практически исключительно полагается на дыхание, для которого ей нужен кислород