По содержанию щелочных и щелочноземельных оснований почвообразующие породы делят на засоленные, карбонатные и выщелоченные. В выщелоченных породах содержание окисей кальция, калия, магния, натрия в пределах 1—3 % каждого. Карбонатные породы содержат до 15—20% карбоната кальция (СаСОэ). В засоленных породах много сульфатов и хлоридов кальция, магния и натрия.
В зависимости от сочетания факторов почвообразования тип почвы приобретает характерную дифференциацию на горизонты
, определенным химическим составом. Например, в дерново-подзолистых почвах верхние горизонты обогащены кремнеземном, который трудно поддается разрушению и вымыванию, а окиси алюминия и железа в кислой среде более лабильны и вымываются в нижние горизонты почвенного профиля. Для всех почв характерно накопление органических веществ в верхних горизонтах и накопление в них важных элементов питания микроорганизмов и растений.
Запасы химических элементов питания растений в почвах значительны, они исчисляются для некоторых типов почв десятками и сотнями тонн на 1 га. Но большинство из них находятся в труднодоступной форме. Например, оксиды и гидроксиды железа, гидроксилапатит кальция, трехзамещенный фосфат кальция — Са3(Р04)2. Основная часть калия в почве входит в состав кристаллической решетки первичных и вторичных минералов в малодоступной для растений форме. Химические элементы, входящие в состав органических веществ почвы, становятся доступными для растений после минерализации. Азот и зольные элементы поглощаются растениями из почвенного раствора и твердой фазы почвы в основном в ионной форме (Са2+, К\ NH4, Fe2\ NOj, NP04~, H2P04 и др.). Элементы питания из почвенного раствора растения усваивают избирательно в процессе физико-химической адсорбции на поверхности корневой системы в зоне всасывания и в результате контактного обмена ионами с твердой фазой почвы.
Необходимое для жизни растений железо находится в почвах в составе первичных и вторичных минералов, в виде окисей и гидроокисей, простых солей, в поглощенном состоянии, в соста-Вс органо-минеральных комплексов, и запасы его составляют сотни тонн на 1 га. Однако большая часть этого элемента находится в малодоступных для растений формах: оксиды железа ^е203> природные смеси гидроокисей трехвалентного железа ^с203 • яН20 и др. На почвах с нейтральной реакцией и щелочных с преобладанием окислительных процессов растения могут испытывать недостаток железа, и в них нарушается образование хлорофилла, листья желтеют и становятся белыми.
В сильнокислой среде (pH < 3) подвижность гидроокисей же-Дсза увеличивается, ионы железа Fe3+ появляются в почвенном Раств°ре. В условиях анаэробиозиса окисное железо превращает-Си в закисное с образованием растворимых соединений — FeC03,
FeS04. Повышенная растворимость соединений железа становищ ся токсичной для растений. Гидроокиси железа образуют с орггц. ническими кислотами в почвах подвижные комплексные соедц^ нения, которые могут вымываться в нижние горизонты почвен^ ного профиля и в грунтовые воды. '
Азот в почвах содержится в основном в органическом веще^ стве. Чем больше в почве органических веществ, особенно гумут са, тем больше азота. В составе гумуса содержание азота от 2,5 до 5 %. Накопление азота в почве происходит в основном при биологическом усвоении его из атмосферы, в которой он составляет 78,08 %. В почвообразующих породах азот содержится в незначительных количествах.
Азот становится доступным для растений после минерализации органических веществ микроорганизмами. Интенсивность минерализации зависит от количества и состава органических веществ, водного режима, аэрации, температуры и реакции среды в почве.
Азот доступен растениям главным образом в минеральной форме: окисленной (NO3) и восстановленной (NH4). Нитратный и аммонийный азот легко поглощается растениями.
Аммонийный азот накапливается в почве в результате жизнедеятельности аммонифицирующих микроорганизмов, которые разлагают органические остатки и гумус. Ион NH4 фиксируется почвенно-поглощающим комплексом, частично находится в почвенном растворе.
Нитратный азот образуется в почве в результате окисления аммонийного азота двумя группами автотрофных бактерий. Бактерии группы Nitrosomonas окисляют аммонийный азот до азотистой кислоты, группа Nitrobakter — азотистую кислоту до азотной. Ион NOJ находится в основном в почвенном растворе, он мало адсорбируется твердой фазой почвы. В условиях промыв-^ ного водного режима нитратный азот вымывается из почвенного профиля в грунтовые воды.
Уровень возможной обеспеченности растений почвенным азотом в конкретных условиях определяют различными способами. Иногда такую оценку дают по легкогидролизуемому азоту, который может образоваться при минерализации легкоразлагаемой части органических веществ в почве (аминокислот, амидов) в начале вегетационного периода. Эта часть азота определяется в вытяжках из почвы слабыми кислотами (0,5hH2SO4) по методу И. В. Тюрина и М. М. Кононовой. Для расчета доз азотных
удобрений и получения планируемого урожая сельскохозяйственных культур Г. П. Гамзиков (1981) предложил метод опреде-лСния нитратного и аммонийного азота в пахотном горизонте п0чвы перед посевом (табл. 11).
Таблица II. Шкала обеспеченности растений легкоусвояемыми формами азота для почв Западной Сибири (по Г. П. Гамзикову, 1981) | |||||
---|---|---|---|---|---|
Обеспеченность растений азотом | Содержание азота в почвах (мг/кг) в слое 0—20 см перед посевом | Потребность растений в азотных удобрениях | Ориентировочные дозы внесения N, кг/га | ||
N — N03 | N — NH3; N — NH4 | Кислотно-гидролизуемый | |||
Очень низкая | <10 | <10 | <30 | Очень сильная | 60—90 |
Низкая | 10—15 | 10—20 | 30—60 | Сильная | 45—60 |
Средняя | 15—20 | 20—40 | 60—90 | Средняя | 30—45 |
Высокая | >20 | >40 | >90 | Отсутствует | 0 |
Эта шкала обеспеченности растений нитратным азотом (N—N03) рекомендована для дерново-подзолистых, серых лесных и черноземных почв; аммонийного азота — для серых лесных почв и черноземов; кислотно-гидролизуемого азота — для дерново-подзолистых почв.
Фосфор в почвах содержится в значительно меньшем количестве по сравнению с азотом и калием. Содержание валового фосфора (Р205) в почвах невелико — 0,05—0,30 % (от 1 до 5 т/га в пахотном горизонте 0—20 см). Пополнение запасов фосфора в почве биологическим путем не происходит.
Органические соединения фосфора в почвах представлены Фитином, нуклеиновыми кислотами, сахаро-фосфатами и др., минеральные — солями кальция, железа, алюминия, магния °Ртофосфорной кислоты. Фосфор входит в состав осадочных г°рных пород фосфоритов с содержанием Р205 — 5—34 %, минералов: апатита — ЗСа3(Р04)2 • Ca(F, Cl, ОН)2 с примесью Мп,
Sr и др. с содержанием Р205 — 41—42 %; вивианита — ^сз(Р04)2• 8Н20 с примесью Са, Mn, Mg.
Фосфор в почвах находится в труднодоступных для растений нормах. В почвах с сильно кислой реакцией фосфор находится в ровном в виде фосфатов железа и алюминия. В слабокислых, ^Игральных и щелочных почвах преобладают фосфаты кальция. асть Фосфора адсорбируется твердой фазой почвы, частично
находится в почвенном растворе в виде фосфат ионов (Н2РС НРО4"), которые легко поглощаются растениями.
Содержание подвижного фосфора в кг/га в пахотном гор зонте почв определяют по формуле
?2Os = advhm%,
где а — количество подвижного фосфора Р205 в мг/100г, onperi ленного по методу Кирсанова или Ф. В. Чирикова; dv — пла ность пахотного горизонта, г/см3; Ишх — мощность пахотного ] ризонта, см.
Для определения подвижных фосфатов в почве (непосредй венно усвояемого фосфора растениями) применяют различи^ методы извлечения в зависимости от типа почв и их свойств.
Для характеристики обеспеченности растений фосфором^ расчета норм фосфорных удобрений проведена группиров почв по количеству подвижного фосфора (табл. 12).
Таблица 12. Группировка почв по содержанию подвижных форм фосфора (для зерновых культур) | ||
---|---|---|
Группапочв | Содержание подвижных форм фосфора | Количество Р205, мг/100 г почвы V |
Для подзолистых, дерново-подзолистых, серых лесных почв (вытяжка в 0,2н. HCI по методу Кирсанова) | Для некарбонатных черноземных почв (вытяжка в 0,5н. СН |