Прикладное психологическое время: срок жизни
В «Путешествии Гулливера» Джонатан Свифт знакомит нас с расой бессмертных — струльдбругов. Вот только эти бессмертные все равно стареют и становятся немощными, жалкими созданиями — обузой для общества. Несчастье или зло бессмертия — лейтмотив многих мифов и литературных произведений. Нас предостерегают: говоря о долголетии, будьте осторожны в своих желаниях.
Честно говоря, я думаю, что это притворство — близок локоть, да не укусишь. Когда смерть разрушает память и накопленное знание, это ужасно и расточительно. Увеличение продолжительности жизни здорового человека должно стать одной из приоритетных задач науки.
Глава 3. Здесь очень мало составляющих
Еще детьми мы познаем разнообразие окружающего мира. Здесь есть другие люди, животные, растения, вода, почва, камни, ветер, Солнце и Луна, звезды, облака, книги, смартфоны и многое другое. Мы постепенно учимся разбираться с этими вещами, понимаем, как они могут воздействовать на нас, а мы — на них. Но мы редко придаем значение важному факту, что все многообразие вещей состоит из небольшого количества первичных строительных блоков. А ведь это одна из ключевых научных истин.
Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались уничтожены и к грядущим поколениям перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов…[38]
У слова «атом» древнегреческий корень, означающий «неделимый». Долгое время ученые думали, что мельчайшие частицы, обмен которыми происходит при химических реакциях, — элементарные и неразделимые. Такие основные строительные блоки стали называть атомами, и это название за ними закрепилось.
Но когда люди начали изучать материю в условиях более разнообразных и не вполне типичных для химии, они обнаружили, что атом можно разделить на более мелкие части. Таким образом, рассматриваемый в химии атом, то есть объект, который так называют в большей части научной литературы, в истинном смысле атомом не является: это не элементарный строительный блок.
Традиционный химический атом состоит из электронов, окружающих ядро. Само ядро можно разделить на протоны и нейтроны. Но и это еще не конец истории. Лучшая современная модель мира строит атомы из электронов, фотонов, кварков и глюонов. И есть веские основания полагать, что это действительно так.
Эти открытия — важная часть основ, о которых я говорю в книге, и по своему духу они продолжают атомную гипотезу. Однако они предлагают изменить ее формулировку, а возможно, и название. Следует говорить не «Все состоит из атомов», а «Вся материя состоит из элементарных частиц». Но как бы ни формулировали эту гипотезу, ее основной вывод ясен: материю следует разобрать на как можно меньшие частицы. Сделав это правильно, вы сможете (мысленно) создать резервную копию и сконструировать физический мир.
Современная научная конструкция физической реальности, состоящая из нескольких простых составляющих, требует переосмысления как того, что мы понимаем под словами «простые составляющие», так и того, что значит «конструкция».
Основные составляющие физической реальности — несколько принципов и характеристик, проявляющихся в том, что обычно называют элементарными частицами. Однако такие элементарные частицы существенно отличаются от любых объектов, с которыми мы сталкиваемся на опыте. Именно поэтому, чтобы разобраться, начнем с принципов и характеристик — атрибутов[39] — материи.
Четыре (обманчиво) простых принципа
Функционирование мира строится на четырех простых, но неукоснительно соблюдаемых общих принципах. Сначала я перечислю их конспективно, а затем разъясню более обстоятельно.
1. Фундаментальные законы описывают изменения. Полезно разделить описание мира на две части: состояния и законы. Состояния показывают, что есть, а законы — как это меняется.
2. Фундаментальные законы универсальны. Они выполняются везде и всегда.
3. Фундаментальные законы локальны. Это значит, что поведение объекта в ближайшем будущем зависит только от текущих условий в его непосредственном окружении.
4. Фундаментальные законы точны. Они не допускают исключений. Соответственно, их можно сформулировать в форме математических уравнений.
Простота этих принципов обманчива. Они далеко не самоочевидны, а возможно, даже их истинность не абсолютна. Их особое значение — следствие не логической необходимости, а доказанности. Именно они помогли нам поразительно успешно описать функционирование физического мира, что и призвана задокументировать эта книга.
На протяжении всей истории у людей были самые разные точки зрения на то, как устроен мир. В мифах, сказаниях и — до недавнего времени — в трудах образованных ученых, философов и теологов находили отражение идеи, противоречащие одному или нескольким из перечисленных принципов. Например, астрологию, телепатию, ясновидение и черную магию объясняли некими мощными силами, действующими на больших расстояниях и в больших временных интервалах. Другие гипотезы — экстрасенсорика, телекинез, чудодейственность молитв и магическое мышление[40] — родились из веры в нашу способность влиять на реальность усилием мысли. Большинство этих идей — «рациональное» развитие детских моделей мира. В их основе лежит убежденность, что разум отделим от тела, а наша воля может воздействовать на объекты и события. И подобные модели мира люди выстраивали веками.
За всю историю человечества лишь немногие стремились точно прогнозировать будущее. Мало кто вообще мог помыслить, что такое возможно. Однако именно эта возможность — главное в наших общих принципах, впервые четко сформулированных в семнадцатом столетии. И в этом суть научной революции.
Основная идея первого принципа проста: продуктивнее отвечать на вопрос «Что произойдет дальше?», чем на вопрос «Почему это происходит именно так?». Понять, что произойдет дальше, проще, поскольку благодаря второму и третьему принципам ответ может дать нам эксперимент. Иначе говоря, можно создать точную копию интересующей нас ситуации — то же самое состояние — и наблюдать, что с этой копией происходит.
В соответствии со вторым принципом (принципом универсальности) фундаментальные законы, выявленные в ходе таких экспериментов, всегда будут одними и теми же. А значит, ставить эксперименты можно где и когда угодно.
Третий принцип (принцип локальности) дает нам еще одно существенное упрощение: формулируя фундаментальные законы, нет необходимости принимать в расчет всю Вселенную или всю историю. Следовательно, при соблюдении необходимых мер предосторожности здесь и сейчас можно претендовать на соблюдение всех требуемых экспериментом условий.
И наконец, четвертый принцип (точность) затрагивает наше самолюбие. Он утверждает, что если формулировать фундаментальные законы на основе подходящих гипотез, то можно добиться краткого, но полного и точного описания. А еще это вызов: соглашаться на меньшее мы не должны.
В целом принципы подтверждают: путем экспериментов можно открыть точные, универсальные законы, управляющие изменениями физических объектов. Наука стремится к этому систематически и неустанно.
Эти фундаментальные принципы определяют стратегию совершения открытий. Мы начинаем изучать происходящее в строго определенных, простых ситуациях, которые можем много раз повторить. Затем можно попытаться исследовать что-то более сложное.
Дети, даже детеныши зверей, тоже используют эксперименты для встраивания в физическую реальность. Мы, люди, учимся бросать мяч, подносить ложку ко рту и тысячам других действий, позволяющих изменять физический мир. Мы делаем это, объединяя опыт, накопленный в разных местах и разных условиях. Ученые и люди, приобщившиеся к науке, в каком-то смысле переживают второе рождение. Но таким «детям» двигаться вперед помогают логическое мышление, приборы, расширяющие границы чувственного восприятия, и работа наших предшественников.
Ньютон и локальность
Ньютону не особенно нравилось одно из его величайших открытий. Согласно закону Ньютона, сила притяжения, с которой одно тело (назовем его телом B) действует на другое тело (назовем его A), действует мгновенно, без какой-либо задержки во времени, как бы далеко эти тела ни находились друг от друга. Это предполагает, что движение тела A нельзя предсказать, исходя только из условий в непосредственной близости от A, — в частности, надо знать, где находится тело B. Ньютон был очень разочарован этим выводом. В письме своему другу Ричарду Бентли он писал:
То, что тяготение должно быть врожденным, внутренне присущим материи и существенным для нее, дабы одно тело могло воздействовать на другое на расстоянии через пустоту, без посредства какого-либо агента, посредством и при участии которого действие и сила могли бы передаваться от одного тела к другому, представляется мне столь вопиющей нелепостью, что, по моему убеждению, ни один человек, способный со знанием дела судить о философских материях, не впадет в нее[41].
Ньютон понимал, что его закон всемирного тяготения нелокален — иными словами, он не соответствовал нашему третьему принципу, — и ему это очень не нравилось.
Для Ньютона и нескольких следующих поколений ученых этот очевидный недостаток был чисто теоретическим: на практике закон всемирного тяготения выполнялся удивительно точно. Можно сказать, что его недостатки имели эстетический или, для самого Ньютона, теологический характер. Казалось, это упущение Бога, вкус которого обычно безупречен.