Основы реальности. 10 фундаментальных принципов устройства Вселенной — страница 23 из 36

С самого своего появления люди размышляли о происхождении физического мира. Легенды о сотворении мира сохранились во многих культурах. Разнообразные мифы на эту тему возникали в разное время и в разных странах, и некоторые веками считались неоспоримыми. Но интеллектуальный и технический инструментарий, позволяющий приоткрыть завесу тайны, впервые стал доступен в ХХ веке.

За последние несколько десятилетий в общих чертах сложилась удивительно ясная картина космической истории. Решающим прорывом стала работа Эдвина Хаббла[93], в которой описывались положение галактик и их движение. Хаббл обнаружил, что галактики удаляются от нас со скоростями, пропорциональными их расстояниям от нас. Из этого расширения Вселенной, если его обратить назад во времени, следует, что материя когда-то была гораздо плотнее, а Вселенная выглядела совершенно иначе.

На что она была похожа? В этой главе я рассмотрю вопрос в три этапа. Сначала представлю смелую гипотезу возникновения Вселенной, широко известную как теория Большого взрыва, и сделаю акцент на ее странной простоте. Затем я набросаю космическую историю, которая вытекает из этой гипотезы. И наконец, обсужу основные наблюдаемые последствия и накопленные свидетельства ее правильности. Глобальный успех этой истории оправдывает смелую гипотезу, которая ее породила.

Все это так, но когда мы заглядываем в самое начало мира, то наблюдаемых свидетельств становится меньше и наши уравнения перестают быть надежными ориентирами. В конце главы я остановлюсь на радужных перспективах — как теоретических, так и экспериментальных, — которые обещают нам более глубокое понимание в этом вопросе.

ВОЗМОЖНОСТИ И ПРЕДЕЛЫ

Работа научит вас, как ее делать.

Аноним (цитируется по записке из печенья с сюрпризом)

Наука часто напоминает игру «Рискуй!»[94], где ответы подсказывают, какие вопросы правильные. Великий астроном и математик Иоганн Кеплер, герой некоторых наших предыдущих историй, в своей работе рассмотрел многие аспекты устройства Солнечной системы. В частности, он получил хорошие[95] ответы на вопросы о форме орбит планет и скоростях их движения. Теперь эти результаты известны как законы Кеплера. Но Кеплер задавался и другими вопросами: например, о том, почему планет именно шесть (как считалось в то время) и почему они находятся именно на таком расстоянии от Солнца. В связи с этим у него возникали забавные идеи; некоторые из них нашли воплощение в музыке — отсюда выражение «музыка сфер» — и стереометрии — так появились «платоновы тела». Но эти идеи так и не привели к хорошим ответам. Сегодня ученые считают, что Кеплер задавал неправильные вопросы.

Исходя из знания основных законов и нашего фундаментального понимания космической истории, мы считаем, что размер и форма Солнечной системы довольно случайны. На них повлияло то, как именно месиво, состоящее из газа, камней и пыли, распадалось на части и сжималось, образовав в конечном счете то, что мы наблюдаем сегодня. Мы рассматриваем нашу Солнечную систему как одну из многих во Вселенной. В других системах мы часто наблюдаем другое количество планет, расположенных иначе, чем Кеплер надеялся объяснить. Кроме того, с его времен и наша Солнечная система разрослась: включила в себя Уран, Нептун, астероиды, Плутон и множество других объектов.

Космическая история вмещает, в принципе, огромное количество всего, включая историю жизни на Земле, историю Китая, Швеции и Соединенных Штатов, историю рок-н-ролла и так далее. Но ни один здравомыслящий человек не взялся бы объяснять эти истории с помощью основных физических принципов.

В действительности космическая история, воссозданная с помощью фундаментальных принципов, позволяет установить три вещи. Во-первых, она предлагает странное, но информативное и убедительное описание того, на что была похожа ранняя Вселенная. Это описание дает хорошие ответы на многие интересные вопросы, а также немало удивительных наблюдаемых следствий. Во-вторых, она предоставила нам общий сценарий того, как могли возникнуть те или иные структуры физического мира, включая нашу Солнечную систему. В-третьих, она ставит новые, невероятно интересные вопросы, например что такое темная материя.

ЧТО ПРОИЗОШЛО

Поразительно простое начало

Делай все просто, насколько это возможно, но не проще.

Альберт Эйнштейн

Как мы уже говорили, открытие Хаббла, которое мы можем кратко охарактеризовать как «расширение Вселенной», фактически вынуждает нас задуматься о том, что происходило раньше.

На первый взгляд кажется, что мы переживаем последствия вселенского взрыва. Поняв, как все начиналось, мы, возможно, разберемся и в дальнейших событиях.

В качестве первой попытки давайте просто «поставим фильм на обратную перемотку»: мысленно поменяем вектор движения всех галактик на обратный и предоставим законам физики делать их работу[96]. И вот галактики несутся навстречу друг другу, постепенно сближаясь. За счет гравитации они начинают притягиваться, и их ускоренное движение высвобождает энергию. Материя перемешивается и нагревается. Температура повышается. Атомы теряют электроны, быстро движущиеся заряды испускают сумасшедшее излучение. Уплотнившиеся, стремительные протоны и нейтроны превращаются в бульон из кварков и глюонов. Наконец, наши с трудом приобретенные знания о фундаментальных взаимодействиях окупаются. В частности, асимптотическая свобода предполагает большое упрощение — при высоких энергиях сложность сильных взаимодействий исчезает. Горячая и плотная материя на удивление проста для понимания, ее можно объяснить, исходя непосредственно из фундаментальных принципов.

Но прежде чем принять эту реконструкцию прошлого, мы должны подготовиться к встрече с главной концептуальной проблемой. От нее зависит история Вселенной. Суть в следующем: простая картина обращенного вспять космического расширения, которую я только что набросал, крайне зыбка. Чего нам закономерно следует ожидать при стремительном сближении материи, так это того, что звезды, планеты, газовые облака и все остальное, притягиваясь под действием неумолимой гравитации, сольются в гигантские черные дыры. Да, негравитационные взаимодействия стремятся превратить сверхплотную, обладающую большой энергией материю в горячий однородный газ — это их любимое равновесное состояние. А вот гравитация ненавидит однородность. Гравитация любит, чтобы предметы слипались, и, в частности, требует, чтобы сверхплотная материя слиплась в черные дыры. Если бы сейчас мы не понимали картину мира лучше, при «обратной перемотке космического фильма» мы бы честно предсказали, что гравитация победит. Ранняя Вселенная превратилась бы в большие черные дыры, притягивающиеся друг к другу и сливающиеся в еще большие черные дыры. Но при таком повороте событий сейчас — снова прокрутим «фильм» вперед! — практически вся наша вселенская материя была бы по-прежнему заперта в черных дырах. Ведь если ты однажды угодил в большую черную дыру, выбраться из нее довольно сложно!

Вселенная, которую мы на самом деле наблюдаем, непохожа на наше «предсказание». Она, если ее усреднить по межгалактическим масштабам, очень однородна. В какую бы часть неба мы ни посмотрели, вырезав достаточно большой фрагмент, мы найдем галактики одного типа, распределенные с одинаковой плотностью. Это было еще одним революционным открытием Хаббла. Поскольку гравитационные силы стараются уменьшить однородность вещей, тот факт, что сегодня мы наблюдаем ее в крупных масштабах, означает, что раньше Вселенная была еще однороднее. С точки зрения нашего прокручиваемого назад «фильма» это означает, что процесс объединения материи идет именно так, как надо. Он тонко организован таким образом, чтобы избежать гравитационных слияний.

Теория Большого взрыва в космической истории использует простую концепцию ранней Вселенной как горячего однородного газа. Именно такую картину я нарисовал вначале, прежде чем выразить сомнение по поводу ее стабильности. Теория Большого взрыва просто игнорирует эти опасения. По сути, она постулирует полное равновесие для негравитационных взаимодействий и максимальное неравновесие для гравитации. Если расширяющуюся по Хабблу Вселенную прокрутить в обратном направлении, то предполагается первое, в то время как при прокручивании хаббловской квазиоднородной Вселенной предполагается второе. Такой вот странный гибрид двух противоположных идей.


Расширяющийся огненный шар

Итак, мы считаем, что вначале был очень горячий однородный газ. Мы также предполагаем, что пространство, которое могло бы, согласно общей теории относительности, быть искривленным, на самом деле является евклидовым, то есть плоским[97]. Для первой грубой модели физической космологии это все, что нам нужно знать.

Ингредиенты нашего горячего газа перемещаются так быстро и взаимодействуют так активно, что достигают динамического баланса, который называется тепловым равновесием. При чрезвычайно высоких температурах, которые, как мы полагаем, установились во Вселенной в первые моменты после Большого взрыва, процесс формирования теплового равновесия особенно эффективен. Именно на этом этапе многое может произойти — и происходит. Образуются и разрушаются частицы — от фотонов до глюонов, кварков, антикварков, нейтрино, антинейтрино и других, — или, что то же самое, они излучаются и поглощаются. Все они здесь, в равновесии, и в предсказуемых концентрациях. Вспоминается афоризм Г. Уэллса, точно описывающий состояние теплового равновесия: «Если возможно все, то ничего интересного нет».

Другая характерная особенность сверхвысоких температур — невозможность существования стабильных структур. Молекулы распадаются на атомы, атомы — на электроны и ядра, ядра — на кварки и глюоны и так далее. Короче говоря, мы подходим к основам мироздания.