Плохая новость: гравитационные волны трудно обнаружить.
Как мы ищем
Концепцию, легшую в основу конструкции LIGO, изложил в своей статье Райнер Вайсс в 1967 году. Чтобы «поохотиться» на гравитационные волны, ученые и инженеры придумали и внедрили множество технологических инноваций. Первое успешное наблюдение гравитационных волн произошло почти пятьдесят лет спустя. За свою работу над LIGO Райнер Вайсс[118] вместе с Кипом Торном и Барри Баришем в 2017 году получили Нобелевскую премию.
Чтобы понять, как LIGO обнаруживает гравитационные волны, представьте себе три объекта в вершинах большой (воображаемой) буквы L. Для простоты предположим, что они плавают в космосе. Когда волна проходит, само пространство искажается, так что расстояния между объектами меняются со временем. Найдя способ сравнивать длины плеч L, мы сможем попытаться обнаружить этот эффект и получим способ узнавать о приходе гравитационных волн.
Однако некоторые грубые расчеты дают неутешительные оценки величины эффекта. Относительное изменение длин должно составить 10–21, или одну миллиардную одной триллионной. Большинству физиков казалось невозможным обнаружить такой мизерный эффект. Но Райнер Вайсс и его друзья предложили новые идеи.
В качестве опорных объектов экспериментаторы выбрали зеркала: поставили их далеко друг от друга[119], а затем заставили световые лучи по многу раз отражаться в каждом, что увеличило длину плеч интерферометра. Стандартный метод интерферометрии позволяет сравнивать длины световых путей с точностью до долей длины волны. В итоге крошечное отношение длины световой волны к многократно увеличенной длине плеча позволило обнаружить изменение длин величиной 10–21. Этот трюк подарил нам детектор, чрезвычайно чувствительный к относительным движениям зеркал. Следующая задача — отделить движение, вызванное гравитационными волнами, от всех остальных вероятных эффектов.
Конечно, пришлось учитывать множество факторов. В проектных документах и отчетах о полученных результатах группы LIGO подробнейше описываются принятые меры предосторожности и выполненные проверки на непротиворечивость результатов. Упомяну только одну из самых серьезных проблем. Вибрации поверхности, на которой расположена экспериментальная установка, возникают из-за чего угодно — от слабых землетрясений до плохой погоды и проезжающих мимо грузовиков. Для подавления таких вибраций зеркала подвешены на четверные маятники и стабилизированы с помощью активной обратной связи. Это чудо инженерной мысли вывело решение проблемы амортизации ударов и шумоподавления на новый уровень.
С другой стороны, предсказано, что колебания, вызванные гравитационными волнами, должны обладать некоторыми особыми свойствами. Вот главное: они должны возбуждать в двух разделенных в пространстве детекторах идентичные, но смещенные по времени интерференционные картины, которые соответствуют возмущению, распространяющемуся со скоростью света. Если говорить подробнее, теория слияния черных дыр и нейтронных звезд предсказывает, как должны выглядеть колебания в зависимости от времени в случае, если они вызваны гравитационными волнами от этих источников.
Первое успешное обнаружение гравитационных волн произошло 18 сентября 2015 года. Это соответствовало предсказанию о вспышке излучения, которая должна была возникнуть при слиянии двух черных дыр с массой примерно в 20–30 раз больше, чем масса нашего Солнца. Эти дыры находились от нас на расстоянии около 1,3 миллиарда световых лет.
С тех пор зафиксировано еще около пятидесяти подобных событий. Особенно интересное случилось 17 августа 2017 года. Оно соответствовало предсказаниям о том, что должно происходить при слиянии двух нейтронных звезд. Астрономы наблюдали процесс в нескольких областях электромагнитного спектра, в том числе зарегистрировали всплеск гамма-излучения и долгоживущее послесвечение в видимой области. Это положило начало новому виду «многоканальной» астрономии и обещает расширить наше представление о природе странных далеких событий.
Распределенная сенсория
…слушай: за углом
чертовски славный мир, ей-ей; идем[120].
Иллюзия «фантомной руки» — потрясающий опыт. Он состоит в том, что вы прячете свою правую руку за перегородкой, рядом с которой кладете фальшивую резиновую руку. На нее вы и смотрите. Ваш друг постукивает и поглаживает случайным образом вашу невидимую настоящую руку и синхронно — ее видимого резинового двойника. Через короткое время — обычно менее минуты — у вас возникнет ощущение, что поглаживания и постукивания чувствует больше резиновая, чем настоящая рука. Дайан Роджерс-Рамачандран и Вилейанур Рамачандран — пионеры в изучении этой и схожих иллюзий — обратили внимание на следующие глубокие следствия этой иллюзии:
Все мы в течение жизни делаем определенные предположения о нашем существовании… Но одно кажется незыблемым. Мы уверены, что мы заключены в своем теле. Однако стоит на несколько секунд подвергнуть нас правильной стимуляции, и мы временно отказываемся даже от этой основной аксиомы нашего существования.
Несколько лет назад в течение примерно часа я был в двух местах сразу. Я сидел дома в Кембридже, в штате Массачусетс, и одновременно посещал конференцию в Гётеборге, в Швеции. Мне это удалось благодаря ростовому аналогу иллюзии резиновой руки. Я видел и слышал все «глазами» и «ушами» робота, взглядом и вниманием которого управлял дистанционно с помощью джойстика. Я также мог «ходить» и разговаривать с людьми: они видели мое выражение лица на экране робота. Я выступал с коротким докладом, расхаживая по сцене и отслеживая реакцию публики, участвовал в групповой дискуссии и общался с коллегами во время кофе-брейков.
Сначала, осваивая систему управления, я остро осознавал искусственность ситуации. Но примерно через полчаса, когда появился автоматизм, я почувствовал себя так, будто действительно нахожусь в Гётеборге. Тем не менее в глубине души я понимал, что остаюсь в Кембридже, перед экраном компьютера. Мое сознание расширилось — робот расширил мое «я».
Система, которую я использовал, была довольно грубой. Никто не принял бы робота на платформе BeamPro за человека, равно как и резиновую руку за настоящую. Но я испытал незабываемые ощущения. В будущем усовершенствованные платформы и улучшенная обратная связь с виртуальной средой наверняка помогут разработать сенсорную систему, которая будет рассредоточена по всему пространству, но в то же время глубоко встроена в наше сознание.
Квантовое восприятие и самовосприятие
Думаю, я могу с уверенностью сказать, что никто не понимает квантовую механику.
Я считаю, что понимаю уравнение, если могу предсказать свойства его решений, не решая его.
Естественное человеческое восприятие плохо сочетается с квантовой механикой. В квантовом мире сосуществуют многие возможные конфигурации и варианты поведения. Если вы посмотрите (то есть проведете наблюдение), то увидите только один вариант из возможных — и не сможете заранее сказать, какой именно. Нельзя с помощью одного набора ощущений (то есть наблюдений) полностью оценить состояние квантовой системы[121].
Главная цель естественного человеческого восприятия — дать нам представление о мире в виде объектов с более или менее предсказуемыми свойствами, занимающих более или менее определенные положения в трехмерном пространстве. Это очень полезная информация для повседневной жизни, и мы легко ее получаем. Но фундаментальное понимание подсказывает: можно увидеть еще многое. А квантовая механика переводит эти возможности на другой уровень.
К счастью, способы адаптировать квантовый мир к естественному человеческому восприятию существуют, хотя пока мало изучены. Если мы можем вычислить интересующее нас состояние — скажем, состояние кварков и глюонов в протоне, или электронов и ядер в молекуле, или кубитов в квантовом компьютере, — мы также можем вычислить, какими оказались бы наши наблюдения этих состояний при большом количестве экспериментов, как если бы мы их выполнили. Мы можем даже представить все результаты этих вычислений параллельно на многих дисплеях. Таким образом физики, химики и туристы могли бы погрузиться в квантовый мир и, возможно, наконец прийти к его пониманию.
Познай себя.
Как ни странно, похожая проблема связана и с нашим восприятием себя. В мозгу происходит одновременно много вещей, но сознание позволяет нам в каждый момент заниматься только одной. В результате многое вообще от нас ускользает. Мы можем переключать внимание, но для нас сложно и неестественно сосредоточиваться одновременно на более чем одном деле[122].
По мере того как наша способность отслеживать и объяснять состояния мозга усовершенствуется, мы получим возможность представлять наше внутреннее «я» через визуальную систему на дисплеях, обходя фильтр естественного сознания. Мы будем получать больше информации, а пропускать — меньше. Люди по-новому и глубже узнают себя, а возможно, и других.
Глава 9. Впереди еще много загадок
Самое прекрасное, что мы можем испытать, — это ощущение тайны. Она — источник всякого подлинного искусства и науки. Тот, кто никогда не испытал этого чувства, кто не умеет остановиться и задуматься, охваченный робким восто