Основы реальности. 10 фундаментальных принципов устройства Вселенной — страница 32 из 36

ПРИНЦИП КОМПЛЕМЕНТАРНОСТИ В НАУКЕ

Первым этот принцип сформулировал великий датский ученый Нильс Бор. По одной версии, Бор почерпнул его из опыта работы с квантовой физикой, а по другой — пришел к такому образу мыслей раньше, естественным образом, и как раз это сделало возможными его уникальные открытия. Некоторые биографы Бора объясняют все влиянием Сёрена Кьеркегора, датского мистика и философа, которым Бор восхищался.

Между первыми приблизительными представлениями о квантовом поведении, относящимися примерно к 1900 году, и созданием современной квантовой теории в конце 1920-х был период напряженных раздумий. Тогда казалось невозможным согласовать результаты различных экспериментов. Бор строил причудливые модели, которые объясняли одни наблюдения и игнорировали другие. Альберт Эйнштейн написал о его работе:

Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьем — найти главнейшие законы <…> атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли.

Исходя из этого опыта, Бор развил принцип дополнительности в мощный метод, позволяющий проникнуть в суть вещей. Из точных наук этот мудрый метод перекочевал и в философию.

ПРИНЦИП КОМПЛЕМЕНТАРНОСТИ В КВАНТОВОЙ МЕХАНИКЕ

В квантовой механике ключевой способ описания объекта, будь то электрон или слон, — его волновая функция. Волновая функция объекта — своего рода заготовка, которую мы можем превратить в прогнозы относительно его поведения. Мы можем совершать с волновой функцией разные манипуляции, получая ответы на разные вопросы. Если мы хотим предсказать, где будет находиться объект, мы должны обработать его волновую функцию одним способом, а если интересуемся скоростью — то другим.

Если не вдаваться в детали, эти два способа исследования волновой функции похожи на два способа анализа музыкального произведения: гармонический и мелодический. Гармонический анализ локален, только, в отличие от частицы, здесь отслеживается не точка в пространстве, а момент времени. Мелодический анализ исследует более общие свойства. Гармония — аналог местоположения, а мелодия — скорости.

Мы не можем провести эти два вида анализа одновременно. Они мешают друг другу. Если вы хотите узнать о местоположении, придется обработать информацию о волновой функции таким образом, что будут уничтожены данные о скорости, и наоборот.

Хотя точные детали сложны, я все же подчеркну: все сказанное основывается на прочном математическом фундаменте. В современной квантовой теории дополнительность — факт, а не голословное утверждение.

До сих пор я обсуждал принцип квантовой дополнительности, используя такие понятия, как волновые функции и обработка информации. Но мы можем рассмотреть ситуацию более конкретно, с другой — экспериментальной — точки зрения. Вместо того чтобы спросить, как исследовать волновую функцию частицы и сделать прогнозы о ее поведении, мы спросим, как нам взаимодействовать с частицей, чтобы измерить ее свойства.

В рамках математического аппарата квантовой механики комплементарность положения частицы и ее скорости формулируется как теорема. Но так можно описать природу, а не раскрыть истину. В действительности многие основатели квантовой теории, включая Эйнштейна, скептически относились к ее сложившейся математической форме. Из невозможности квантовой теории одновременно предсказать положение и скорость должна следовать наша неспособность одновременно измерять эти свойства в эксперименте. Иначе нам потребовался бы новый математический аппарат, пригодный для описания таких измерений.

Вскоре после того, как молодой Вернер Гейзенберг заложил основы современной квантовой теории, он осознал ее поразительный математический результат: положение и скорость не измерить одновременно. Он сформулировал этот вывод как «принцип неопределенности». И ключевой вопрос, который он ставит, таков: правильно ли описываются конкретные факты, то есть события, которые мы наблюдаем в физическом мире? Гейзенберг, а затем Эйнштейн и Бор — все они ломали голову над ответом.

На уровне физического поведения комплементарность отражает два ключевых момента. Первый заключается в том, что для измерения свойств чего-либо вы должны с этим чем-либо взаимодействовать. Другими словами, наши измерения не фиксируют реальность, а только «берут с нее пробу». Вот как это изложил Бор:

В квантовой теории <…> логическое осмысление ранее неизвестных фундаментальных закономерностей <…> потребовало осознания того, что невозможно провести четкое разделение между независимым поведением объектов и их взаимодействием с измерительными приборами.

Второй ключевой момент, усиливающий первый, таков: точные измерения требуют сильного взаимодействия с измерительными приборами.

Помня об этом, Гейзенберг рассмотрел множество способов измерить положение и скорость элементарных частиц и обнаружил, что все они согласуются с его принципом неопределенности. Этот анализ укрепил уверенность в том, что странный математический аппарат квантовой теории — отражение странных явлений в физическом мире.

Факт, что наблюдение — активный и «агрессивный» процесс — стал отправной точкой анализа Гейзенберга. Без него мы не можем использовать математический аппарат квантовой теории для описания физической реальности. Однако это разрушает модель мира, которую мы выстраиваем в детстве. Согласно ей, существует точная граница между нами самими и внешним миром, обладающим свойствами, которые мы открываем путем наблюдений. Осмыслив открытия Гейзенберга и Бора, мы понимаем: это не так. Наблюдая за миром, мы участвуем в его построении.

Гейзенберг работал над принципом неопределенности в Институте Нильса Бора в Копенгагене. У этих двух создателей квантовой теории были горячие дискуссии, и между ними возникли своего рода отношения наставничества. Ранние идеи Бора о дополнительности возникли как интерпретация работ Гейзенберга.

Эйнштейн не разделял мнения Бора и Гейзенберга. Ему не нравилась идея комплементарности — сама мысль, что могут быть правильные, но несовместимые точки зрения. Он надеялся, что возникнет более полное понимание, которое объединит их, — например, что найдется способ измерить одновременно и положение, и скорость (или импульс[138]) частицы. Он уделял серьезное внимание этой проблеме. Его остроумные мысленные эксперименты были сложнее, чем те, которые предлагал Гейзенберг.

Свои знаменитые дебаты с Эйнштейном Бор описывает в обзорной статье «Дискуссии с Эйнштейном о проблемах теории познания в атомной физике». Там Эйнштейн использует серию мысленных экспериментов, оспаривающих некоторые аспекты квантово-механической комплементарности, особенно комплементарность энергии и времени. Отвечая на эти доводы, Бор смог найти тонкие изъяны в анализе Эйнштейна и отстоять физическую непротиворечивость квантовой теории.

Эти дебаты, как и дальнейшие, прояснили природу квантовой теории, и до настоящего времени ее правильность не оспаривалась всерьез. Люди использовали квантовую теорию для создания множества чудесных устройств, от лазеров до айфонов и GPS-навигаторов. Эти устройства вполне работоспособны. Если «то, что не убивает» правда «делает нас сильнее», то позиции квантовой теории и вытекающей из нее комплементарности теперь реально сильны.

Кстати, если вам интересно, что все это означает на примере упомянутого в начале раздела слона, ответ такой: хотя для слона квантовая неопределенность в принципе присутствует, о ней можно спокойно забыть. У нас не возникает проблем с измерением положений и скорости слона с точностью, достаточной для практических задач. Неопределенность этих параметров по сравнению с их реальными величинами ничтожно мала. Другое дело — электроны в атомах.

УРОВНИ ОПИСАНИЯ

Еще один источник комплементарности — разные уровни описания. Иногда описание системы, использующее одну модель, при работе с ней становится слишком сложным, чтобы ответить на важные вопросы. Тогда мы можем найти дополнительную модель, основанную на других идеях.

Простой пример объяснит эту значимую, полезную, практичную идею как нельзя лучше. Горячий газ, заполняющий воздушный шар, состоит из огромного количества атомов. Если бы мы хотели предсказать поведение газа, применяя ко всем этим атомам законы механики, то столкнулись бы с двумя большими проблемами.


• Даже если бы мы ограничились рамками классической механики, нам нужно было бы знать положение и скорость каждого атома в начальный момент времени. Сбор и хранение такого количества данных совершенно непрактичны. Использование квантовой механики только усугубило бы проблему.

• Даже если бы мы получили и сохранили данные, еще непрактичнее было бы при помощи вычислений отслеживать изменения в движениях частиц.


Несмотря на это, опытные экипажи уверенно управляют воздушными шарами. В некоторых отношениях поведение воздуха легко предсказуемо.

Используя совершенно другие концепции, мы можем найти простые законы, описывающие поведение воздуха в макромасштабах, — в терминах плотности, давления и температуры. Именно эти параметры помогают ответить на вопросы, возникающие у пилотов аэростатов. Да, описание на уровне атомов гораздо информативнее, но большая часть этой информации будет совершенно бесполезна для вас, если вы захотите полетать (и даже хуже: она отвлечет ваше внимание).

Рассмотрим, например, положение и скорость любого конкретного атома, которые в результате его движения быстро меняются. Фактическая траектория атома сильно зависит от точных начальных значений, а также от того, что делают другие атомы. Таким образом, информацию о положении и скорости конкретной частицы чрезвычайно сложно вычислить и она быстро устаревает. Плотность, давление и температура в этом отношении намного полезнее. Открытие и количественное определение этих простых, стабильных свойств, дающих ответы на важные вопросы, стало крупным научным достижением.