жали бы количество кислорода в каждой из них. Дальтон считал, что каждый элемент имеет собственные атомы, которые не распадаются в ходе химических реакций. Кроме того, атомы различных элементов могли связываться друг с другом, образуя комплексы, которые мы сегодня называем молекулами.
В период между зарождением микроскопической теории газов и атомистическим объяснением химических реакций, разработанным Дальтоном, представление о том, что материя имеет корпускулярную структуру, постепенно набирало вес. Взлет и падение флогистона и теплорода в качестве объяснений процесса горения и тепла ярко иллюстрируют процессы, происходящие в науке. По мере того как ученые пытаются объяснить природные явления, они создают все новые и новые гипотезы и готовы яростно их защищать. Так и должно быть, учитывая, что чем более убедительной является идея, тем больше чувств она вызывает у своих создателей и последователей. Однако научные гипотезы должны постоянно подвергаться эмпирической проверке, поэтому они остаются в силе ровно до тех пор, пока не будут опровергнуты или ограничены. Объяснение может казаться достаточным для описания данных («сохранения фактов», как говорил Платон), даже если по сути оно неверно. Эпициклы были совершенно искусственным понятием, но описывали движение небесных светил с достаточной точностью. Флогистон и теплород были далеки от реальной физики, но хорошо объясняли горение и существование тепла. Способность науки добиваться все более и более точных описаний физической реальности основывается на нашем умении проверять верность предположений со все возрастающей точностью. Если движение к большей точности блокируется или прерывается, научный прогресс останавливается. Исследования расширяют границы Острова знаний (а иногда и, наоборот, отодвигают их назад). То, что в океане неведомого вокруг него нет ни одного маяка, чтобы указать нам путь, делает научный поиск одновременно и сложнее, и интереснее. И нет лучшего примера этого поиска, чем изучение света и его туманной природы.
Глава 20. Таинственный светв которой мы узнаем, как загадочные свойства света стали причиной целых двух научных революций в начале ХХ века
Мы создания света, этого таинственного и странного явления, которое и сегодня остается загадкой для многих из нас.
Свет, который мы получаем от Солнца, представляет собой совокупность множества электромагнитных волн, каждая из которых имеет свою длину. Небольшая видимая часть этого множества, спектр от красного до фиолетового цвета, состоит из волн длиной от 400 до 650 миллиардных долей метра (нанометров). Длина волны – это расстояние между двумя ее последовательно идущими гребнями. Соответственно, когда мы говорим о коротких волнах, мы имеем в виду, что их гребни расположены плотно. В длинных же волнах дистанция между двумя гребнями больше.
По сути, все мы продукты эволюции, происходившей на нашей планете в течение четырех миллиардов лет под ярким солнечным светом. Солнце, поверхность которого имеет температуру около 5500 градусов Цельсия, в соответствии с неформальной классификацией звезд считается желтым карликом и испускает большую часть света в желто-зеленом спектре. На самом деле поверхность Солнца белая, а желтоватый цвет, который мы видим с Земли, объясняется рассеиванием синих частот при прохождении солнечного света через атмосферу. В дневные часы Солнце кажется нам очень ярким, потому что свет отражается от молекул азота и кислорода в воздухе. Этим же объясняется и голубой цвет неба: воздух гораздо эффективнее рассеивает короткие волны, чем длинные, а синий имеет меньшую длину волны, чем красный или желтый. Если посмотреть на небо в сторону от Солнца, мы увидим ту часть солнечного света, которая рассеивается лучше всего, то есть синий и немного белого цвета.[109] Учитывая, что размеры молекул воздуха в тысячи раз меньше стандартной длины волны, можно понять, почему синий цвет рассеивается лучше всего. Желтый и красный цвета с большой длиной волны прокатываются по воздуху, как волны по каменистому берегу, не замечая мелких преград на своем пути. На закате солнечный свет падает на Землю по касательной, и ему требуется больше времени на прохождение через атмосферу. Поэтому большая часть синего цвета рассеивается еще до того, как свет достигнет низкой высоты. В результате мы видим больше красного и оранжевого, чем синего и зеленого. В пасмурные дни капли воды и кристаллики льда, из которых состоят облака, рассеивают все волны, из которых состоит солнечный свет, равномерно, и в результате он приобретает белесый цвет.
Вопреки нашим наивным предположениям, свет, который воспринимают наши глаза, составляет менее половины всего излучения, которое Земля получает от Солнца. Без научных приборов, регистрирующих то, что невидимо для глаз, наши знания о физической реальности были бы крайне ограниченны. Но, даже располагая необходимыми инструментами, мы должны помнить, что их возможности имеют границы, и обзор с нашего Острова знаний обладает своим горизонтом. Чем больше мы видим, тем к большему стремимся.
Видимый свет составляет всего 40 % от всего солнечного излучения, попадающего в верхние слои нашей атмосферы. Оставшаяся часть – это 50 % инфракрасного и 10 % ультрафиолетового излучения. Благодаря защите атмосферы лишь 3 % ультрафиолетовых лучей достигают поверхности планеты, а объем видимого света увеличивается до 44 %. В случае с Солнцем (как и во многих других случаях) то, что мы видим, и то, что мы получаем, – это совсем не одно и то же. Наши органы чувств были сформированы естественным отбором так, чтобы повысить наши шансы на выживание на этой планете. Жители других планет с другим атмосферным составом и большим или меньшим количеством звездного света могли бы развить у себя чувствительность к другим частям электромагнитного спектра. Даже на Земле ночные животные, пещерные и глубоководные существа имеют разные механизмы адаптации (вспомните, например, об эхолокации у летучих мышей и о свечении глубоководных рыб).
Все приведенные выше объяснения стали возможными в результате триумфа физики XIX века – описания света как вибрации электромагнитных полей. Каждый источник электромагнитного излучения можно свести к осциллирующим, или ускоряющимся, электрическим зарядам. В 1861–1862 годах шотландский физик Джеймс Клерк Максвелл, работавший в лондонском Кингс-колледже (моей альма-матер), доказал существование связи между электричеством и магнетизмом, что позволило ему совершенно по-новому описать взаимодействие материальных объектов. До этого подобные описания строились на понятии сил – например, силы притяжения Ньютона или силы, которую мы прилагаем к педалям велосипеда, когда едем в гору. Вдохновленный идеями Майкла Фарадея, Максвелл предложил свою знаменитую теорию электромагнитного поля. С тех пор именно она применяется в физике для объяснения взаимодействия самых разных объектов, от электронов до звезд. Сила – это производная поля.
Данная концепция стала настолько всеобъемлющей, что применяется уже не только к взаимодействиям между объектами. Мы можем говорить о температурном поле в помещении (то есть о том, как температура меняется от точки к точке) и о поле скорости воды в реке или ветра в атмосфере. Электрический заряд создает вокруг себя электрическое поле, представляющее собой его пространственное проявление. Другой заряд, приближающийся к первому, сможет почувствовать его присутствие на расстоянии, причем чем ближе будет первый заряд, тем выше окажется значение поля. Одинаковые заряды притягиваются, а противоположные отталкиваются. То же самое происходит и с магнитами. Вы можете провести быстрый эксперимент: снимите два магнита с холодильника и попытайтесь соединить их. В какой-то момент они начнут сопротивляться вашим действиям. Судя по всему, пространство вокруг магнитов наполнено чем-то, что заставляет их отталкиваться друг от друга. Это что-то называется магнитным полем. Точно так же и масса вашего тела создает вокруг вас гравитационное поле. Другие массы чувствуют его присутствие и притягиваются к нему с силой, обратно пропорциональной квадрату расстояния до вас.
При колебании электрического заряда поле колеблется вместе с ним. Чтобы понять, как это происходит, представьте себе пробку, болтающуюся на поверхности воды. По воде от нее расходятся двухмерные круги. Колеблющийся заряд точно так же испускает электрические волны, но в трех измерениях. По мере колебания его скорости также возникает магнитное поле, которое начинает колебаться вместе с электрическим. Одно поле цепляется за другое, и оба они постепенно удаляются от заряда. Отличие от кругов на воде только в том, что эти поля направлены перпендикулярно друг другу, как концы креста. Если заряд колеблется вверх и вниз, магнитное поле будет двигаться вправо и влево и волны будут перемещаться в направлении, перпендикулярном кресту (мы говорим об электромагнитных волнах, что они поперечны).[110]
Итак, движущийся заряд создает колеблющиеся электрические и магнитные поля, которые расходятся в пространстве. Максвелл показал, что в вакууме скорость такого их распространения равняется скорости света. Это подтолкнуло его к потрясающему выводу: свет представляет собой электромагнитное излучение, электрические и магнитные поля, распространяющиеся в форме волн. Единственное различие между, например, красным и фиолетовым цветом состоит в том, что длина волны у первого больше, чем у второго. Между короткими и длинными волнами в электромагнитном спектре находятся и другие типы излучения: радиоволны, микроволны, инфракрасные волны, видимое излучение, ультрафиолетовые волны, рентгеновские и гамма-лучи (самые короткие и обладающие наибольшей энергией).
Если свет (как уже упоминалось ранее, этим словом я обозначаю все виды электромагнитного излучения) – это волна, то в чем он распространяется? Другие, более привычные нам волны представляют собой колебания среды: волны могут возникать на поверхности воды, звуковые волны – это изменения давления воздуха, а если взять веревку за один конец и хорошенько встряхнуть, по ней тоже пойдут волнообразные движения. Так в чем же появляются волны света? Это одна из множества связанных с ним загадок. Сегодня мы знаем, что свету не нужна материальная среда для распространения. Он может двигаться в вакууме, и для этого ему нужно всего лишь содействие электрических и магнитных полей. Разумеется, свет может проходить и через материальную среду. Каждый из нас хотя бы раз открывал глаза под водой или смотрел через стекло. В результате движения в среде свет теряет часть своей скорости, так как световые волны заставляют электрические заряды, из которых состоит материальная среда, колебаться вместе с ними.