Остров знаний — страница 43 из 55

В апреле 2004 года венская группа Цайлингера использовала пару связанных фотонов для того, чтобы перевести пожертвование в размере 3000 евро от городской администрации в Банк Австрии. Для этого одному из двух фотонов пришлось преодолеть 1450 метров по оптоволоконному кабелю, не разрывая при этом связи со своим партнером. За год до этого Цайлингер успешно переправил связанные фотоны через Дунай (с крыш двух башен для сточных вод). Ставки росли, и в 2007 году Цайлингер отправил связанные фотоны на расстояние 144 километра, разделяющее испанские острова Тенерифе и Гран-Канария. Пара фотонов была сгенерирована лазером в обсерватории на Гран-Канарии, а затем принята оборудованием на Тенерифе. Смысл этого эксперимента состоял в том, чтобы показать, что связи между электронами сохраняются даже на больших расстояниях в открытом пространстве и не разрушаются под влиянием температуры или атмосферных колебаний. Цайлингер планирует повторить свой эксперимент в космосе, используя МКС в качестве источника фотонов. Предполагается, что частицы будут направлены на детекторы, расположенные на поверхности Земли далеко друг от друга. Предварительные тесты с использованием японского спутника оказались весьма многообещающими. Судя по всему, нелокальность – это гораздо более стабильное явление, чем нам казалось раньше. Но если так, почему мы не замечаем его вокруг себя? Или все же замечаем?

Глава 27. Сознание и квантовый мирв которой рассматривается возможная роль сознания в мире квантовых эффектов

Я уже рассказывал вам о своей встрече с великим физиком Джоном Беллом, который посоветовал мне держаться подальше от исследований в области толкования квантовой механики в начале научной карьеры. Еще я говорил, что до встречи с Беллом писал Дэвиду Бому и тот ответил мне, что больше не курирует студентов. Как я ни старался, двери в мир квантовой механики закрывались одна за другой. Уже начав работать над докторской и опубликовав несколько работ по единым космологическим теориям с несколькими дополнительными измерениями, я сделал отчаянный шаг – обратился к человеку, чьи книги вдохновили меня в первый год учебы в университете, пускай даже в то время у меня уже возникали сомнения относительно его попыток связать воедино современную физику и восточный мистицизм. Звали этого человека Фритьоф Капра. Седьмого декабря 1984 года я отправил ему сердечное письмо, в котором жаловался, как мои взгляды на физику расходятся с принятым у большинства моих коллег принципом «заткнись и считай». Покоренный романтичным образом ученого-бунтаря, я мечтал поработать вместе с ним над вопросами связи между сознанием и квантовым миром. К счастью (как мне кажется теперь), я опоздал. На тот момент Капра еще имел кое-какие связи с лабораторией Лоуренса Беркли в Калифорнии, но не занимал постоянную университетскую должность и не работал со студентами. Несомненно, если бы Капра взял меня под крыло, моя карьера сложилась бы совершенно иначе. Но, оглядываясь назад, я радуюсь, что этого не произошло.

Мне было 25 лет, и я искал способы соединить рациональный научный подход, привитый мне в университете, с той глубокой духовностью, которую я воспитывал в себе с юности. Примерно в то же время я прочел «Философский камень» Колина Уилсона и задумался, действительно ли наш мозг может гораздо больше, чем то, ради чего мы его используем. Научно-фантастическая книга Уилсона прекрасно описывала, как электростимуляция неокортекса может переключить мозг человека в режим гениальности.[149] Возможно ли, что у каждого из нас действительно имеется такой потенциал, ждущий, когда его откроют? Добавим к этому еще и факт, что за несколько лет до этого я, как и многие другие зрители по всему миру, был поражен выступлением израильского экстрасенса Ури Геллера и его умением гнуть ложки силой мысли. Как, черт побери, он это делал? Каким образом, следуя его инструкциям, люди запускали старые часы, просто взяв их в руки? Я лично вернул к жизни дедушкины наручные часы, которые были сломаны уже много лет. В то время работы блестящего фокусника и скептика Джеймса Рэнди, демонстрирующего, как проделывать такие трюки с помощью простой ловкости рук, еще не были так известны, как телевизионные выступления Геллера. Как здравый смысл мог противостоять притяжению магии?[150]

В своем юношеском энтузиазме я был уверен, что я не одинок в своих попытках связать физику с потусторонним миром. Многие великие викторианские ученые переживали увлечение мистикой, включая даже некоторых нобелевских лауреатов: лорд Рэлей, объяснивший голубой цвет неба, Дж. Дж. Томсон, открывший существование электронов, Уильям Рэмзи, первооткрыватель благородных газов, сэр Уильям Крукс и сэр Оливер Лодж, выдающиеся физики своего времени. Все они, как и многие другие, практиковали оккультизм и искали доказательства существования телепатии, общения с мертвыми, психокинеза и иных чудесных и сверхъестественных явлений.[151] Они считали пространство пронизанным невидимыми электромагнитными волнами, эфирными вибрациями, излучаемыми живой и мертвой материей. Гильермо Маркони довел до совершенства прием и передачу радиоволн – звуков и голосов из воздуха. Что еще могло скрываться незамеченным в этом зыбком мире?

Новая наука постоянно играет с границами возможного. Если наши ограниченные органы чувств не замечают столь многого, почему не предположить, что от них скрыто гораздо больше? Что, если существует душа, способная пережить материальное разложение тела? Современная наука в сочетании с исконным человеческим стремлением к вечной жизни могла бы открыть мир, населенный духами, а если бы нам были доступны правильные каналы коммуникации, духи могли бы ответить на наши отчаянные призывы. Крукс, Лодж и Томсон принимали участие в сотнях спиритических сеансов, каждый раз ожидая, что произойдет что-то невероятное. Еще недавно наука была настолько гибкой, что прощала даже самым блестящим своим представителям подобные устремления. Неудивительно, что я решил отправиться для написания своей докторской диссертации в Англию. Я втайне надеялся найти связь между нашим миром и волшебной невидимой реальностью, которая иногда показывалась из тени возможного.

Викторианские джентльмены от науки пытались найти мост между миром материи и миром духа. Эту же попытку, хотя и в более формальном выражении, предприняли и основатели квантовой механики, изучавшие связь между квантовой физикой и ролью наблюдателя. Квантовая физика образовалась на месте столкновения реального и невозможного, рутинного повседневного опыта и альтернативного мира, в котором необычность является нормой. Какую позицию нам занять? Нужно ли бороться со странностями и вслед за Эйнштейном настаивать, что реальность должна быть рациональна по своей сути? Или нам следует сойти со старого пути реалистичности и углубиться в новый мир квантовых эффектов, приняв его отклонение от нормы за новый мировой порядок?

Если мы выбираем второй вариант, возникает следующий вопрос: как далеко мы готовы зайти? Так как различные интерпретации квантовой механики не так-то легко поддаются экспериментальному подтверждению, большинство физиков предпочитает не иметь с ними дела. Неважно, что, по-вашему, квантовая механика говорит нам о мире – значение имеют лишь данные на наших детекторах. Давайте исследовать реальность, не поддаваясь на субъективные интерпретации. В конце концов, разве суть науки не состоит в независимости от субъективного выбора?

Подобная слепота к тайнам и загадкам квантовой физики шокирует ученых из другого лагеря. «Как вы можете спокойно спать по ночам, зная, что мы ничего не понимаем в самой сути реальности? – вопрошают они. – Нелокальность уничтожает пространственное разделение между классическими (большими) и квантовыми (малыми) явлениями. Закрывать глаза на это – значит быть подобными церковникам, которые отказывались посмотреть в телескоп Галилея».

Из этого тупика нет выхода. Вот как Максимиллиан Шлоссхауэр, Йоханн Кофлер и Антон Цайлингер резюмировали ситуацию после проведения опроса среди участников конференции «Квантовая физика и природа реальности», прошедшей в июле 2011 года в Австрии:

Квантовая теория основывается на четкой математической базе, имеет огромное значение для естественных наук, позволяет делать потрясающе точные предсказания и играет ключевую роль в современном технологическом развитии. Тем не менее за 90 лет с момента ее создания научное сообщество так и не пришло к единому мнению относительно толкования ее базовых единиц. Наш опрос призван напомнить об этом необычном положении дел.[152]

Существуют различные подходы к ситуации – от умеренных до радикальных. Начнем с первых. Старая добрая копенгагенская интерпретация задает правила игры: между квантовой системой и классическим измерительным устройством существует четкое разделение. Мы, наблюдатели, никогда не вступаем в прямой контакт с квантовой системой – за нас это делают детекторы. Мы лишь интерпретируем результаты взаимодействия между системой и измерительными приборами после того, как в результате усиления воздействия видим вспышки или следы или слышим щелчки на фотографическом или цифровом регистраторе. Волновая функция, фундаментальная единица квантовой физики, представляет собой математическое выражение возможностей – потенциальных результатов измерения. Это не физическая величина, так как она не имеет связи с физической реальностью. В отличие от классической физики, в которой уравнения движения напрямую ссылаются на конкретный движущийся объект (шар, волну или автомобиль), в квантовой физике уравнение описывает амплитуду вероятностей. Предположим, что мы хотим измерить местоположение частицы. До измерения ее волновая функция распространяется по всему пространству (или области движения частицы, если она ограничена), отражая различные вероятности ее нахождения здесь или там. Уравнение Шрёдингера описывает, как волновая функция развивается во времени с учетом всех возможных сил, влияющих на частицу. Когда мы проводим измерение и обнаруживаем частицу в определенном месте, волновая функция коллапсирует. Она перестает быть возможностью и превращается в реальность, мгновенно переходя от распространенности во всем пространстве к концентрации в одной точке. Строго говоря, акт измерения делает измеряемое реальностью, перенося его из зыбкого мира квантовых вероятностей в конкретный мир обнаружения и чувственного восприятия. Если говорить коротко, измерять – значит создавать.