Освоение Солнечной: логистика будущего — страница 36 из 55

Питать космическую лазерную батарею мощным термоядерным реактором возможно те же безумные триллионы лет, что и в примерах выше. Жилое пространство таких космических городов совершенно аналогично жилому пространству Солнечной, хотя энергию и свет им подарит внутренний реактор вместо солнечных электростанций на внешнем корпусе.


Материальная оговорка

Вместо потока фотонов можно использовать луч заряженных частиц. У того есть свои ограничения по стабильности и сравнительно малая дальность, зато куда выше масса частиц в потоке.

Достаточно мощной электромагнитной системе по силам отправлять поток обратно – и фактически удваивать эффективность материального разгона. Хотя разумеется, эффективнее всего такое решение окажется на местных, сравнительно коротких маршрутах.


Ограничения разгона

Известная нам физика безжалостно утверждает, что даже у внешнего лазерного разгона будет падать эффективность в зависимости от скорости парусника. Но для серьёзного падения мощности луча скорость должна серьёзно приблизиться к световой.

Ранние полёты на относительно безопасных и легко реализуемых 10% световой останутся крайне эффективными по соотношению энергозатрат к результату.


Предельные ограничения

Лучевой разгон эффективнее в том, что касается предельных достижимых скоростей. Хорошая термоядерная схема позволит всё то же самое. Космос наполнен водородом, горючего термоядерным реакторам заведомо хватит на трудновообразимые галактические эпохи.

Лазер предпочтительнее, когда хочется получить очень-очень высокую скорость для сравнительно высокой полезной нагрузки – без возни с подвесными топливными баками и головной боли о том, обо что их безопасно разбить после сброса, когда из-за скорости во многие проценты световой те превратятся в релятивистское оружие круче любого атомного.


Рифы космоса... опять

Теоретически лазерный разгон позволяет скорость в районе 99% световой. Серьёзных помех здесь только две. Заполненность космического пространства звёздными системами на маршруте – раз. Общее сопротивление межзвёздного пространства настолько скоростному телу в полёте – два.

Но здесь мы и возвращаемся к идее «реки света» – межзвёздной фотонной трассе большой мощности.


За чистый космос!

Мощные разгонные лазеры способны «выдуть» космическую пыль и газ из больших коридоров межзвёздного пространства. Задачи вывода гиперскоростного лазерного парусника на маршрут, коррекции его курса, торможения или доразгона эффективно решат те же самые лазеры.

В пределах ойкумены из многих звёздных систем, каждая из которых имеет полнофункциональный стеллазер, возможности быстрого межзвёздного полёта на досветовых скоростях резко улучшаются.


Межгалактическая стадия

Да, эту систему теоретически возможно использовать на межгалактических расстояниях. Да, разгон лучами Николла-Дайсона позволит в теории скорость больше 99% световой. Да, по актуальным физическим теориям это замедлит время на борту, хотя сам межгалактический полёт всё равно займёт сотни тысяч лет.

И да, это то, что когда-либо грамотно обыграли в своих текстах полтора фантаста, из которых самый достойный современный пример – «Отсчёт до триллиона» Джона Си Райта.

Но, вернёмся к более представимым хрупким человеческим рассудком масштабам!


Ширина коридора

Для пролёта космических городов на скорости в большую часть световой требуется полётный коридор шириной во многие секунды на той же световой. В этом коридоре требуется выдуть любой объект размером хотя бы с видимую человеческим глазом песчинку.

Впрочем, задача куда проще, чем кажется, поскольку это одна из тех космических проблем, где эффективно работает чисто количественное решение – сколько человеко-часов цивилизация готова потратить на решение вопроса. Качественные затруднения решать сложнее.


Теплостойкость паруса

Как и любая другая космическая энергетика, лазерная двигательная схема упирается в мусорное тепло. А точнее – количество мегаватт на квадратный метр паруса. Чем больше выдерживает материал, тем легче и сам парус и достаточно эффективная система принудительного теплоотвода и переизлучения тепла.

Эффективная графеновая схема может принять мегаватты тепла на квадратный метр паруса – без потери его прочностных характеристик. Ещё забавнее, что масса настолько прочного и настолько тонкого паруса резко падает – до тех величин, когда она составляет единичные проценты общей массы конструкции, а не сравнительно большую долю – половину, треть, четверть...

Даже ограниченное использование суперматериалов очень сильно меняет доступное цивилизации могущество.


Эффективная дальность лазера

При эффективной дальности комплекса из лазера, системы наблюдения и паруса в одну световую неделю, в пределах одного светового года от Солнечной потребуется возвести несколько десятков промежуточных разгонных станций.

На фоне триллионов космических городов в освоенной солнечной, которые всё ещё пытаются взять барьер в хотя бы 1% эффективности роя Дайсона это совершенно ничтожные масштабы. На фоне современной Земли – полноценное государство трудновообразимой мощи, космическая сверхдержава. Совокупная численность жителей станции полпути может варьироваться от сотен тысяч до единичных миллиардов человек.


Коридор безопасности

При размере диагонали одного паруса во многие километры и суммарной ширине коридора безопасности в несколько сотен километров, лазерная трасса на миллион километров способна вместить огромное количество транспорта одномоментно. В том числе – направленного в разные стороны.

Это сложная задача постоянного наблюдения, точного позиционирования и сверхточного наведения лазеров, но, как и абсолютное большинство упомянутых выше решений, она преимущественно количественная. Прорывы качественного типа делают что-то эффективнее или дешевле, но в целом принцип работы остаётся всё тем же, как и высокая безопасность подобной космической трассы.


Проблема тяги

Разгон на высоком ускорении имеет серьёзный побочный эффект. Под тягой сила тяжести направлена в ту же сторону, куда улетает рабочее тело при разгоне. У космического города под ускорением в десятки процентов земного потребуется создать полностью трансформируемое внутреннее пространство. Космический город под ускорением в 1g фактически превращается в башню.

Это достаточно сложная инженерная задача, но решений у неё довольно много.


Ограничение ускорения

Проще всего сознательно ограничиваться малым ускорением при разгоне. Для полёта на дальние межзвёздные расстояния сто лет туда, сто лет сюда практически теряют значение. Лёгкий перекос земли под ногами решается методами обычного ландшафтного дизайна.


Конический дизайн

Имитацию тяготения вращением и тягу привода можно эффективно сочетать в коническом жилом пространстве. Итоговый вектор легко направить к земле под ногами, хотя внутреннее пространство такого города окажется довольно сильно искажено.


Город-трансформер

Достаточно развитой технологии доступен полностью трансформируемый космический город. Он сравнительно легко и сравнительно быстро перестраивает себя в зависимости от того, куда в данный момент направлен «вниз» – согласно предварительным расчётам или достраиваемым «на лету» мощными компьютерами шаблонам трансформации.

Такое применение достаточно простых и скромных по меркам героических космоопер технологий оказывает вполне заметный эффект в рамках жёстких научно-фантастических ограничений.


Межзвёздные транспортные капсулы

Внутри коридора межзвёздной лазерной трассы возможно использовать крайне эффективный лёгкий космический транспорт. В масштабах космического города на маршруте конструкция размером с морской корабль выглядит очень маленькой и скромной. Но всё равно, это миллионы килограммов полезной нагрузки, а то и десятки миллионов.

Эти десятки миллионов килограммов термоядерного горючего позволят даже очень большой лазерной системе постоянную работу на пиковой мощности. Одинокую планету-гигант на топливо для миллионов подобных станций можно разбирать дольше, чем проживёт наше Солнце.


Мобильные станции полпути

Главный принцип космоса – «подвижное в подвижном» работает и здесь. Достаточно большие лазерные станции на базе космического города вполне реально поместить внутрь космического транспортного коридора – и пользоваться ими для усиления внутренней транспортной связности этой подвижной системы.

Они резко повышают эффективность обмена транспортными капсулами между сообществами в полёте. Настолько, что на постоянно активном маршруте их вполне осмысленно держать постоянно же. У этого есть замечательное социальное последствие.


Культурный обмен

Любые бунтари, искатели странного и хиппи космоса получают замечательную возможность совместить личные интересы с нуждами общества. Подвижный элемент внутренней транспортной системы постоянной лазерной трассы превращается в аналог роскошного круизного лайнера.

Представить себе торговлю на межзвёздных расстояниях затруднительно, представить себе эффективный культурный и научный обмен заметно проще. Гипотетические прорывы с бессмертием первого рода могут породить ситуацию, когда многие десятилетия полёта останутся лишь короткой частью активной жизни человека будущего и сохранят единое культурное пространство на расстоянии во многие световые годы без разделения на безусловное «мы» и «они».

Что это всё значит для космической цивилизации? Прежде всего – дополнительный запас живучести!

Глава восемнадцатая: угрозы цивилизации

Медные тазы против нефритовых жезлов

Абсолютное большинство классических апокалиптических сценариев жизнеспособно только на большом экране. Опровергаются все они в зародыше – комбинацией справочных данных и школьной арифметики. Но, пока народ безграмотен, кино и цирк остаются лучшим средством привлечения внимания.