Осязание. Чувство, которое делает нас людьми — страница 27 из 38

Кто-то думает, что жизнь без боли – сплошная идиллия. Между тем это не так. Боль появляется в ответ на стимулы, которые вызывают повреждения тканей. Без нее мы не научимся уворачиваться от острых предметов, кипящих жидкостей или разъедающих кожу химикалий. Люди с полной нечувствительностью к боли постоянно получают травмы. Они прикусывают себе язык, ломают кости, перетирают связки и оставляют шрамы на роговице, случайно втирая в глаза мелкий песок. Многие не переживают подросткового возраста. Большинство из них не погибает при таких драматических обстоятельствах, как тот пакистанец, что прыгнул с крыши. Их смерть чаще всего становится результатом обычного повреждения тканей: плохо подобранные туфли натирают ноги, слишком горячая пища разъедает пищевод, слишком плотно сидящие трусы врезаются в промежность. Им постоянно угрожают бактериальные инфекции, неизбежно следующие за такими повреждениями.

Сканирование мозга пакистанских детей, нечувствительных к боли, не выявило никаких нарушений, как и биопсия икроножного нерва. В отличие от пациентов с норрботтенским синдромом, о которых мы говорили в главе 3, у этих детей оказалось обычное количество различных типов сенсорных волокон – от быстрых волокон А-альфа до медлительных С-волокон. Анализ их ДНК показал, что все шестеро – носители мутаций в одном и том же гене SCN9A, который отвечает за продукцию потенциал-зависимых натриевых каналов, что необходимо для распространения электрических сигналов в нейронах. Но функция гена SCN9A почти полностью ограничена теми нейронами, которые передают информацию о боли от кожи и внутренних органов. (За другие нейроны отвечают другие гены натриевых каналов.) Соответственно, нейроны, которые передают сигналы боли в спинной и головной мозг, присутствуют, но являются электрически нейтральными. Вот почему результаты биопсии икроножных нервов детей показали нормальные значения, несмотря на полное отсутствие у этих детей чувства боли. Когда в лабораторных почечных клетках искусственно экспрессировали мутантный вариант гена SCN9A из ДНК этих пациентов, в них не функционировали никакие натриевые каналы – электрический ток на мониторе отображался в виде прямой линии (рис.6.1). Пока нет способов восстановить эту функцию, а следовательно, и эффективно вылечить врожденную нечувствительность к боли. Эти мутации рецессивны, так что для наследования заболевания у человека должно оказаться две копии гена SCN9A с соответствующей мутацией – по одной от каждого родителя. Именно поэтому синдром чаще всего встречается там, где практикуются близкородственные браки. Другой тип генетической мутации называется мутацией с приобретением функции. В случае с геном SCN9A такие мутации вызывают нарушение свойств потенциал-зависимых натриевых каналов. Достаточно унаследовать всего один такой мутантный ген, чтобы восприятие боли катастрофически изменилось.

Рис.6.1. Мутации гена SCN9A вызывают серьезные изменения восприятия боли и потенциал-зависимого натриевого тока. На этом рисунке – результаты работы искусственно введенных в почечные клетки различных мутантных форм гена SCN9A. Электрический ток быстро меняет напряжение клеточной мембраны с80 милливольт до 0 милливольт, что примерно отражает ситуацию, при которой нейрон посылает электрический сигнал по аксону. Обычный ген SCN9A выдает типичный натриевый ток: краткий приток положительного заряда внутрь, полностью останавливающийся через несколько миллисекунд. Ген SCN9A пациента с врожденной нечувствительностью к боли содержит мутацию W897X, которая полностью прекращает функционирование канала: электрический ток никуда не поступает. Ген SCN9A пациента, страдающего пароксизмальным болевым расстройством, содержит мутацию G1607R. В результате натриевый ток возникает в соответствии с нормой, а деактивируется медленно и не до конца, так что ток идет гораздо дольше обычного. Лекарство карбамазепин частично умеряет этот эффект и полезно при лечении симптомов пароксизмального болевого расстройства. Врожденную невосприимчивость к боли вызывает несколько видов мутаций, но все они в итоге демонстрируют прямую линию на мониторе. Несколько мутаций могут вызывать и синдром пароксизмального болевого расстройства, но все они приводят к неполной деактивации натриевого тока


Все начинается вскоре после рождения, часто с первым сокращением кишечника: ребенок пугается, и на его лице проступает выражение крайнего ужаса. Безутешно рыдая, новорожденный прижимается к взрослому. Тело напрягается и сильно краснеет, а лицо искажает гримаса. Такие приступы могут длиться по нескольку минут и случаться много раз на дню. Часто их вызывает обычное прикосновение ко рту или к анусу: кормление, вытирание рта, установка ректального термометра. Способность новорожденных к общению ограничена, но с возрастом они начинают жаловаться на боль, которая сперва проявляется в области ануса, подбородка или глаз и затем распространяется по всему телу. Эта боль – одновременно жгучая, колющая и разлитая, и, по словам тех, кто ее испытал, ничего мучительнее нельзя и представить. Все матери, страдающие таким расстройством, говорят, что родовые схватки рядом с этой болью – ничто. Большинство из них признаются, что если бы узнали, что их ребенок будет страдать этим синдромом, то прервали бы беременность.[108]

Эта патология получила название пароксизмального болевого расстройства. Его также вызывает мутация с приобретением функции в гене SCN9A. На рис.6.1 показан натриевый ток от мутантного гена SCN9A, взятого у пациента с этим расстройством. При деполяризации клетки натриевый ток работает нормально, но деактивируется медленно и не до конца. В результате нейроны, отвечающие за восприятие боли, превращаются в автомат со сверхчувствительным спусковым крючком: стимулы, которые побудили бы обычные нейроны к отправке одного-двух электрических сигналов, теперь вызывают настоящую вспышку. Из-за проблем с электрической сигнализацией даже самые невинные стимулы могут привести к приступу очень сильной боли. К счастью, существует лекарство карбамазепин, которое помогает деактивировать потенциал-зависимые натриевые каналы, в том числе и те, что образуются в результате работы гена SCN9A. У некоторых пациентов карбамазепин приводит к полному облегчению, а у многих других снижает частоту и остроту приступов боли.[109]

Но даже без лечения карбамазепином пациенты, страдающие от пароксизмального болевого расстройства, обычно в состоянии жить полной жизнью. У большинства из них есть дети, карьера, нормальная продолжительность жизни. В каком-то отношении это противоречит здравому смыслу: если бы вам предложили выбрать между двумя формами мутации SCN9A – одна сделает вас нечувствительным к боли, но почти гарантированно убьет молодым, а другая будет подвергать приступам дикой боли в течение всей сознательной жизни (достаточно длинной), что бы вы предпочли?


Представьте, что вы ходили по дому босиком и ушибли пальцы ноги о ножку массивного стула. Боль проявляется постепенно. Сначала это резкая боль, локализованная в тех пальцах, которыми вы ударились. Она быстро успокаивается, и вы готовы хоть песни распевать, пока не подступит вторая волна пульсирующей рассеянной боли. Первая болевая волна переносится в спинной мозг покрытыми миелиновой оболочкой волокнами А-дельта среднего диаметра, которые передают электрические сигналы со скоростью примерно 110 километров в час, и волокнами А-бета большого диаметра, которые позволяют развивать скорость до 230 километров в час. Вторую волну боли передают С-волокна малого диаметра, транслирующие сигналы гораздо медленнее – на скорости около 3 километров в час. Все участки кожи (и бо́льшая часть внутренних органов) пронизаны как быстрыми, так и медленными волокнами, отвечающими за болевые ощущения (рис.6.2). Разница во времени между первой и второй волнами боли особенно заметна для участков, наиболее удаленных от мозга – например, для тех же пальцев ног. А вот, например, у боли в области лица тоже есть быстрый и медленный компоненты, но перерыв между ними гораздо меньше, так что две волны боли часто неразличимы. Конечно, у более крупных животных такой перерыв выражен еще ярче. Так, если тридцатиметровая динозавриха (например, диплодок) прищемляла себе хвост плывущим по реке деревом, то первая волна боли наступала через секунду, а второй требовалась целая минута, чтобы достичь головного мозга и быть воспринятой.[110]

Первая волна боли быстра, точна и несет смыслоразличительную информацию: она снабжает нас данными, относящимися к непосредственной угрозе, и управляет реакциями. Часто мы уже успеваем убрать ногу и пустить крепкое словцо, но тут накатывает вторая волна боли. Представьте себе, что вы схватили горячую ручку кастрюли. Из-за первой волны боли вы сразу же ее отпускаете, начинаете махать рукой в воздухе, чтобы утихомирить ощущения, но тут подступает вторая волна. Она медленно начинается, медленно заканчивается и плохо локализуется. Боль бывает гудящей, жгучей или пульсирующей. Вторичная боль требует постоянного внимания и мотивирует поведение, которое должно минимизировать дальнейшие повреждения и способствовать восстановлению (например, побуждает беречь больную ногу при ходьбе).

Рис.6.2. Первичная боль наступает быстро, она хорошо локализована и играет смыслоразличительную роль; вторичная боль рассеяна, имеет эмоциональную нагрузку и большую продолжительность. Первичная боль переносится покрытыми тонкой миелиновой оболочкой волокнами А-дельта среднего диаметра и волокнами А-бета большого диаметра и в плотной миелиновой оболочке, а вторичная – С-волокнами без оболочки. Один из способов это выяснить – перевязка, сжимающая и блокирующая А-волокна, но оставляющая С-волокна свободными. Благодаря ей первичная боль не ощущается, а вторичная остается на своем месте. Если вам интересно, то ген SCN9A работает в болевых нейронах как А-волокон, так