В детстве загорание казалось мне магией. Я проводил целый день на пляже, валяясь на солнцепеке и кувыркаясь в волнах. И вечером жар солнечных лучей следовал за мной домой, пойманный моей кожей; он не давал мне заснуть, потому что и прикосновение постельного белья, и струя горячего душа казались невыносимыми. Обгорание вызывает аллодинию – болезненное ощущение в ответ на обычно безобидные осязательные стимулы, как, например, легкое поглаживание обгоревшей кожи. Аллодиния во многом похожа на другую форму устойчивой боли – так называемой спонтанной боли, которая возникает при отсутствии воздействия вообще каких-либо стимулов. Повреждения тканей при аллодинии и спонтанной боли имеют две ключевые особенности. Во-первых, при этих формах устойчивой боли происходит генерализация: повреждение тканей при обгорании, например, вызывает не только усиление чувствительности к нагреванию, но и к механическим стимулам. Если вы при готовке ошпарите подушечку большого пальца и попытаетесь взять ручку и начать что-то писать, этот невинный механический стимул тоже вызовет боль. Во-вторых, воспаление, которое происходит в ответ на повреждение тканей (в том числе распухание, покраснение, ощущение жара), не будет четко ограничено поврежденным участком, а распространится немного сильнее. Например, если вы опять-таки ошпарили подушечку большого пальца, воспалиться на несколько дней рискует весь палец; аллодиния и спонтанная боль могут распространиться даже на ближайшие к нему участки.
Воспаление и устойчивую боль, ассоциирующуюся с ним, вызывает сложный комплекс химических сигналов, получивший название воспалительного супа (рис.6.5). При повреждении ткани пострадавшие клетки выделяют соединения-простаноиды, которые воздействуют на рецепторы класса TRPV1 на окончаниях болевых С-волокон. Поврежденные ткани также активируют красные кровяные тельца – тучные клетки и макрофаги, выделяющие соединение брадикинин. Оно, как и простаноиды, снижает температурный порог активации TRPV1 с жарких 43 °С до обычно безвредных 30 °С (о чем говорилось в главе 5). Другие соединения, выделяемые макрофагами (белки ФНО-альфа и фактор роста нервной ткани), тоже усиливают чувствительность болевых волокон типа С. Активированные тучные клетки выделяют гистамин, который расширяет кровеносные сосуды и слегка увеличивает их поры, что способствует усиленному оттоку плазмы крови и приводит к повышению температуры, покраснению и распуханию близлежащих тканей.
Изначально считалось, что нервные волокна – это только реципиенты болезненных химических сигналов, сейчас же хорошо известно, что окончания болевых С-волокон тоже посылают сигналы, что приводит к установлению цепи положительной обратной связи. Нервные окончания выделяют молекулу кальцитонин-ген-связанного пептида (SGRP), способствующую расширению кровеносных сосудов и просачиванию плазмы. Выделяется и другая молекула – так называемая субстанция Р, которая активирует тучные клетки. Постоянное протекание химических сигналов по поврежденной ткани, белым кровяным тельцам, кровеносным сосудам и болевым С-волокнам – одна из причин того, что боль и воспаление сохраняются несколько дней и даже недель после травмы. Поскольку химические сигналы могут распространяться в соседние здоровые ткани и запускать там новые сигналы, распухание и повышенная болевая чувствительность способны распространяться, но довольно ограниченно: хотя травма большого пальца может привести к тому, что у вас опухнет и будет болеть кисть, при отсутствии инфекции это состояние едва ли затронет всю руку (рис.6.5).
Многие наши наиболее эффективные лекарства для снятия боли и воспаления воздействуют на химические сигналы воспалительного супа. Аспирин, ацетаминофен (тайленол) и ибупрофен подавляют выработку простаноидов. Антигистаминные препараты блокируют действие гистамина на рецепторы в нервных окончаниях и кровеносные сосуды. В последние годы появились лекарства, взаимодействующие с сигналами ФНО-альфа, и произвели революцию в области лечения боли при ревматическом артрите. Большие надежды в плане облегчения постоянной боли возлагают на лекарства, препятствующие воздействию фактора роста нервной ткани. Сейчас проводятся их клинические испытания, но, судя по всему, они ускоряют дегенерацию связок, так что не вполне понятно, насколько эффективными они окажутся.[117] Соединения, извлекаемые из ананаса и алоэ, способны подавлять действие брадикинина. Возможно, их удастся использовать для лечения или как образец при разработке лекарств, блокирующих брадикинин: допустим, анализ структуры этих естественных соединений позволит их создать. Разработка лекарств для борьбы с дополнительными компонентами воспалительного супа по-прежнему остается очень важной задачей.
Рис.6.5. Повреждение ткани приводит к образованию воспалительного супа из химических веществ. Некоторые из них выделяет сама поврежденная ткань (как кератиноцитовые клетки кожи), другие производятся лейкоцитами (макрофагами и тучными клетками), третьи выделяются ответственными за восприятие боли С-волокнами. В результате образуется цикл положительной обратной связи, который поддерживает и усиливает боль и воспаление. Частично это связано с распространением сигнальной молекулы гистамина. Болеутоляющие и противовоспалительные средства часто блокируют определенные части этой сети химических сигналов. Диаграмма кажется сложной – и она действительно сложна, хотя на ней показаны далеко не все дополнительные компоненты воспалительного супа
У Фрэнсиса Макглоуна, знаменитого британского исследователя тактильного восприятия, есть любимый вопрос: «Почему есть хроническая боль, но не существует хронического удовольствия?» Вопрос хороший. Мы уже отмечали, что боль необходима для побуждающего поведения, которое сводит к минимуму повреждения тканей, и что люди, не воспринимающие боль, редко доживают до взрослого возраста. Но боль зачастую длится куда дольше необходимого и продолжает мучать людей даже после заживления поврежденных тканей – порой всю жизнь.
Постоянную боль вызывают не только изменения в окончаниях болевых нервных волокон. Изменения происходят и в синапсах в спинном мозге, где эти волокна вступают в контакт с нейронами заднего рога спинного мозга. Когда в нервные окончания чувствительных к боли С-волокон поступают электрические сигналы, образуется возбуждающий нейромедиатор глутамат. Он проникает сквозь крошечную синаптическую щель между двумя нейронами и поступает в рецепторы глутамата в нейроне заднего рога спинного мозга, тем самым распространяя болевые сигналы по спинному мозгу и в конечном счете в головной мозг. При постоянном стимулировании этого синапса, как в случае постоянной боли, он становится сильнее и эффективнее. Это происходит по ряду причин, в том числе из-за усиления выработки глутамата, увеличения количества рецепторов глутамата в нейронах заднего рога спинного мозга, а также изменений в потенциал-зависимых ионных каналах нейронов заднего рога спинного мозга, способствующих постоянной генерации электросигналов.[118] Эти изменения способны сохраняться очень долго, подобно воспоминаниям. (И действительно, полагают, что некоторые изменения на молекулярном и клеточном уровне, отвечающие за кодирование воспоминаний в мозге, сходны с теми, которые лежат в основе этой формы хронической боли, берущей начало в спинном мозге.) Даже когда воспалительный ответ кожи (или любой другой ткани) полностью прекращается и возвращается нормальная чувствительность нервных окончаний кожи к боли, изменения в спинном мозге могут сохраняться в течение нескольких месяцев или даже лет. Было бы невероятно полезно найти способ избирательного ослабления этих передающих боль синапсов в заднем роге спинного мозга. Неудивительно, что исследования в этой отрасли ведутся весьма активно.
Один из особенно трудно поддающихся лечению случаев устойчивой боли – это фантомные боли конечностей. После ампутации примерно 60% пациентов испытывают ощущение хронической боли в удаленной конечности. Иногда она кажется гудящей, в других случаях ее описывают как жгучую. Этот феномен чаще всего наблюдается, когда ампутация проводится во взрослом возрасте. Он с равной вероятностью возникает и при хирургическом удалении, и при потере конечности в результате травмы. Изначально считали, что фантомная боль конечности вызывается поврежденными нервными окончаниями в культе, но ни хирургическое вмешательство в этой области, ни местные анестетики не приводили к облегчению.
Вероятно, что по крайней мере частично фантомная боль конечности – результат постоянного усиления деятельности возбуждающих синапсов нейронов болевых волокон и заднего рога спинного мозга. Многие годы ампутационная хирургия проводилась исключительно под общим наркозом. При этом болевые сигналы направляются с периферии в задний рог спинного мозга, но блокируются на более поздних стадиях, не попадая в мозг. Вероятность возникновения фантомной боли слегка уменьшается, когда, помимо общего наркоза, используются местные анестетики, вызывающие онемение ампутируемой области перед ампутацией и во время ее, так что болевые сигналы не достигают и заднего рога спинного мозга. Лекарства для подавления постоянного усиления (долговременной потенциации) синапсов, поступающие в нейроны заднего рога спинного мозга, также, по последним данным, несколько снижают вероятность появления фантомных болей.[119]
Если синапсы, передающие болевую информацию в спинной мозг, постоянно усиливаются, то изменяются и сигналы, которые отправляют в головной мозг нейроны спинного; меняется и состояние самого головного мозга. В каком-то смысле ситуация очень напоминает то, о чем шла речь в главе 2, когда отображение руки, пальцы которой используются при игре на струнных инструментах, у опытных музыкантов со временем значительно увеличивалось. У пациентов, испытывающих боли в фантомной конечности, на осязательной карте в первичной соматосенсорной коре порой увеличивается отображение как соответствующей конечности, так и некоторых других участков. У ампутантов, не страдающих от таких хронических болей, изменений в отображении органов не наблюдается.