κδ и νγ). Сначала нужно умножить κ, то есть 20, на цифры числа 53, то есть 20·ν и 20·γ (в современной нотации — 20·50 и 20·3). Далее аналогично рассматривается вторая цифра первого множителя: 8, обозначающая 4, умножается на ν, затем 8 умножается на γ (в современной нотации 4·50 и 4·3).
Затем промежуточные результаты складываются. В современной нотации это записывается так:
24·53 = (20 + 4)·(50 + 3) = 20·50 + 20·3 + 4·50 + 4·3 = 1272.
В графическом виде умножение в греческой нотации выглядит так:
Использование 27 символов затрудняло вычисление промежуточных результатов, так как греческая таблица умножения должна была содержать 27·27 = 729 ячеек. Считается, что именно по этой причине решающую роль в развитии вычислений сыграл абак. Греческие абаки представляли собой таблички из нескольких столбцов, в которых располагались камешки или фишки. Каждому столбцу соответствовала степень 10; также имелись отдельные столбцы для дробей.
Этот абак, который представляет собой мраморную табличку, был найден на греческом острове Саламин в 1846 году.
Ученым удалось изучить эти таблички, так как некоторые образцы, например абак с острова Саламин, дошли до наших дней и, кроме того, содержат информацию о значениях, соответствующих столбцам. В этом абаке с острова Саламин каждый столбец означает определенное количество греческих монет. Большие столбцы обозначают (справа налево) 1, 10, 100, 1000 и 10 000 драхм, затем 1, 10, 100, 1000 и 10 000 талантов (один талант равнялся 6000 драхм). Малые столбцы соответствуют дробям. Использовались следующие дробные части драхмы: обол (один обол равнялся 1/6 драхмы), половина обола, четверть обола и халкус (один халкус равнялся 1/8 обола). Камешки, расположенные под линией, обозначают единицу; расположенные над линией — пять единиц. Следовательно, на следующей схеме представлено число 502158 + 2 обола + + 1/2 обола + 1 халкус.
При сложении с помощью абака камешки ставились рядом в соответствии с их позицией. Когда в нижней части накапливалось пять единиц, они заменялись одной единицей в верхней части, а две единицы в верхней части заменялись одной единицей в следующем разряде. При вычислениях с помощью абака следовало помнить, что 6000 драхм равняются одному таланту, а 6 оболов — одной драхме.
Таблица из «Альмагеста» — труда по астрономии, написанного Клавдием Птолемеем во II веке, в котором используются дроби.
Как и вавилонянам, грекам были известны шести десятеричные дроби, о чем упоминает Птолемей в своем «Альмагесте», однако в математических вычислениях греки использовали египетскую систему. В комментариях к трактату Архимеда Евтокий Аскалонский использует
для обозначения 1838 + 1/9 + 1/11, а
для обозначения 2 + 8/11 + 8/11 + 1/99 + 1/121.
Геометрия в Древней Греции находилась на очень высоком уровне развития, и грекам удалось получить более точную оценку числа π, чем их предшественникам. Архимед доказал, что число π лежит в интервале 3 + 10/71 = 223/71 <π< 3 + 1/7 = 22/7 (что соответствует среднему значению 3,141851), а Птолемей получил приближенное значение, равное 3,141666. Эти значения были получены с помощью двух правильных многоугольников (вписанного и описанного).
Гоавюры, посвященные Архимеду (слева) и Птолемею (справа).
Архимед исходил из того, что шестиугольник, вписанный в окружность единичного радиуса, имеет периметр, равный 6, а описанный шестиугольник — 4·√3. Следовательно, число π лежит в интервале от 3 до 2·√3. Он учитывал, что квадратный корень из 3 удовлетворяет следующему неравенству: 265/153 < √3 < 1351/780. Далее он перешел к правильным многоугольникам с большим числом сторон. Выбрав в качестве исходной фигуры шестиугольник, Архимед последовательно удваивал число его сторон, рассмотрев правильные многоугольники с 12, 24, 28 и 96 сторонами. С помощью правильного 96-угольника он получил приближенное значение 6336/(2017 + 1/4)< Я < 14688/(4673 + 1/2). Так как 3 + 10/71 < 6336/(2017 + 1/4) <π< 14688/(4673 + 1/2) < 3 + 1/7, он выбрал эти два значения в качестве границ интервала, в котором находится π. Птолемей рассматривал многоугольник с 360 сторонами.
Простые числа — это натуральные числа, которые делятся только на единицу и сами на себя. Единица по определению не считается простым числом. Любое натуральное число можно представить в виде произведения простых чисел единственным образом (без учета перестановок множителей). Так, например:
120 = 5·3·2·2·2 = 2·5·2·2·3.
* * *
ПРОСТЫЕ ЧИСЛА, МЕНЬШИЕ 1000
Ниже перечислены простые числа, меньшие 1000. Они будут интересны тем, кто хочет проверить их знаменитые свойства, не затрудняя себя поиском.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997.
* * *
Греки изучили простые числа подробнейшим образом: они дали им определение и доказали их важнейшие свойства. Считается, что они были известны древним египтянам, однако не сохранилось никаких результатов, связанных с простыми числами, которые были бы получены предшественниками древних греков.
В 300 г. до н. э. Евклид, который работал в Александрии во времена правления Птолемея I (323–283 гг. до н. э.), в эпоху слияния египетского и греческого, обнаружил самое удивительное и важное свойство простых чисел. Он изложил его в своем трактате «Начала геометрии» — одном из важнейших трудов в истории математики. В нем заложены основы евклидовой геометрии, которая использовалась во всем мире на протяжении следующих двух тысяч лет. В предложении 20 книги IX «Начал» доказывается, что простых чисел бесконечно много.
Евклид рассматривает множество простых чисел S = {р1, р2…, рn} и показывает, что число N = p1·р2·… ·рn + 1 не делится на р1, поскольку при делении на p1 остаток равен 1. Аналогично N не делится на р2…., рn, так как при делении N на р2…,рn остаток будет равен 1. Следовательно, N либо простое, либо является произведением простых чисел, не содержащихся в S. Таким образом, множество S не содержит в себе все простые числа. Так как S было выбрано произвольно, конечного перечня простых чисел не существует. Как следствие, перечень простых чисел бесконечен.
Фрагмент «Афинской школы» Рафаэля, на котором изображен автор знаменитых «Начал геометрии» Евклид.
Математика и математическая нотация в Древнем Риме не были столь развитыми, как в Греции и Вавилоне. Центр империи, столь плодородной в других областях, не подарил миру ни одного выдающегося математика. Во времена Рима важные события в математике происходили не в столице, а на периферии, в районах, где ощущалось влияние Греции и продолжались традиции греческой математики. Считается, что римская математика принадлежит к совершенно обособленной традиции и не связана ни с греческой, ни с вавилонской, а имеет этрусское происхождение. Основными авторами этого периода, продолжавшими греческие традиции, были Клавдий Птолемей, автор уже упомянутого «Альмагеста», Диофант и Папп Александрийский.
Диофант был автором книги под названием «Арифметика», Папп написал восемь книг с комментариями к трудам классических авторов.
Сам Цицерон признавал ограниченность римской математики в своих «Тускуланских беседах». Он пишет:
«Далее, выше всего чтилась у греков геометрия — и вот блеск их математики таков, что ничем его не затмить; у нас же развитие этой науки было ограничено надобностями денежных расчетов и земельных межеваний» («Тускуланские беседы», I, 5).
Пон-дю-Гар. Фотография Эдуарда Бальдю, середина XIX века. Этот акведук, который также служил мостом для экипажей, был построен римскими инженерами, которые в своих работах использовали математические знания Античности.
Однако этот вопрос, как и любой другой, следует рассматривать в перспективе. Возможно, римляне не совершили значительных открытий в математике и вычислениях, и греческая математика осталась непревзойденной. Однако нет никаких сомнений в том, что римляне были великими инженерами древности, а это невозможно без глубоких знаний математики. Многие из их инженерных и архитектурных шедевров сохранились до наших дней благодаря тому, что при их постройке использовались удивительные решения, и, разумеется, благодаря обширным знаниям математики, которые применялись при строительстве. Как следствие, римляне создали множество текстов о технологии строительства, среди которых стоят особняком работы самого известного архитектора — Витрувия.
Римская нотация очень популярна, так как она широко используется и поныне. Римские цифры приведены в таблице ниже.
Позднее, после изобретения книгопечатания, символ