H).
Вернемся к основной проблеме синтеза различных элементов. Физики первой половины ХХ века столкнулись с рядом вопросов, связанных с периодической таблицей. Во-первых и в-главных, как формируются все эти элементы? Однако были и другие вопросы: почему одни элементы, например, золото или уран, встречаются очень редко (и потому-то и стоят так дорого), а другие, например, железо или кислород, распространены гораздо больше (кислород встречается примерно в сто миллионов раз чаще золота)? А еще – почему звезды состоят в основном из водорода и гелия?
Представления о процессе формирования элементов с самого начала были тесно связаны с колоссальными энергетическими запасами звезд. Вспомним, что еще Гельмгольц и Кельвин предположили, что энергия Солнца вырабатывается благодаря медленному сжатию и связанному с ним высвобождению гравитационной энергии. Однако, как ясно показал Кельвин, этот запас обеспечил бы солнечное излучение лишь на ограниченное время – не более чем на несколько десятков миллионов лет. А подобные ограничения прискорбным образом противоречили геологическим и астрофизическим данным, которые все точнее и точнее показывали, что и Земле, и Солнцу уже несколько миллиардов лет. Эддингтону было прекрасно известно о подобном вопиющем несоответствии. В обращении к съезду Британской ассоциации в Кардиффе 24 августа 1920 года он сделал следующее пророческое заявление:
«Гипотеза о сжатии Солнца жива лишь благодаря инерции традиций – и даже не столько жива, сколько еще не похоронена[295]. Но раз уж мы решили предать ее мертвое тело земле, давайте честно и откровенно признаем, в каком положении мы очутились. Звезда черпает энергию из какого-то обширного источника, о котором мы не имеем ни малейшего представления. Между тем этот источник, скорее всего, состоит из субатомной энергии, которая, как известно, в изобилии содержится в любом веществе (выделено мной. – М. Л.).»
Несмотря на энтузиазм вокруг идеи, что звезды черпают энергию из четырех ядер водорода, которые сливаются воедино и образуют атом гелия, Эддингтон не мог придумать конкретного механизма, необходимого для обеспечения этого процесса. В частности, оставалась нерешенной проблема электростатического отталкивания, о которой мы уже говорили. Препятствие заключается вот в чем: два протона (ядра атомов водорода) отталкиваются друг от друга, поскольку оба несут положительные электростатические заряды. Эта сила, так называемая сила Кулона (в честь французского физика Шарля Огюстена де Кулона), действует на любом расстоянии, поэтому служит доминирующей силой, действующей между протонами на расстояниях больше размера атомного ядра. Однако внутри ядра верх берет мощная ядерная сила притяжения[296], которая способна преодолеть электростатическое отталкивание. Следовательно, чтобы протоны в ядрах звезд соединялись друг с другом, как представлял себе Эддингтон, нужно, чтобы в их беспорядочном движении у них была достаточно большая кинетическая энергия, иначе они не смогут преодолеть кулоновский барьер и не смогут взаимодействовать посредством ядерной силы притяжения.
Слабое место гипотезы Эддингтона состояло в том, что расчетная температура в центре Солнца была недостаточной, чтобы снабдить протоны необходимой энергией. В классической физике это означало бы смертный приговор для подобного сценария: частицы с недостаточной энергией не могли бы преодолеть барьер, и все тут. К счастью, на помощь пришла квантовая механика – теория, описывающая поведение субатомных частиц и света. Согласно квантовой механике, частицы могут вести себя как волны, и все процессы по сути своей вероятностны. У волны, в отличие от частицы, нет точного положения в пространстве, она в нем распространяется. Точно так же как некоторые океанские волны, бьющиеся о волнолом, перехлестывают через него, есть некоторая (небольшая) вероятность, что даже протоны, энергии у которых, по классическим представлениям, недостаточно, чтобы преодолеть кулоновский барьер, все равно будут взаимодействовать. Опираясь на квантово-механический эффект туннелирования[297], физик Георгий Гамов – и независимо от него две группы исследователей, одна под руководством Роберта Аткинсона и Фридриха Хоутерманса, другая – во главе с Эдвардом Кондоном и Рональдом Гарни – в конце 1920 годов показали, что при условиях, превалирующих в недрах звезд, протоны и в самом деле могут соединяться.
Первыми вывели, какие именно ядерные реакции обеспечивают слияние четырех атомов водорода в одно ядро гелия, физики Карл Фридрих фон Вайцзеккер в Германии и Ганс Бете и Чарльз Кричфилд в США. В замечательной статье, опубликованной в 1939 году[298], Бете рассказал о двух возможных способах производства энергии, при которых водород преобразуется в гелий. Первый называется протон-протонный цикл[299]: сначала два протона объединяются в дейтерий – изотоп водорода с одним протоном и одним нейтроном в ядре, – после чего они захватывают один дополнительный протон, и дейтерий превращается в изотоп гелия. Второй механизм, углеродно-азотный цикл, – это циклическая реакция, в ходе которой ядра углерода и азота играют роль исключительно катализаторов. В итоге опять же происходит слияние четырех протонов, которые формируют одно ядро гелия, и это сопровождается высвобождением энергии. Первоначально Бете полагал, что Солнце производит энергию главным образом через углеродно-азотный цикл, однако эксперименты в Радиационной лаборатории Келлога в Калифорнийском технологическом институте впоследствии показали, что в основном энергию Солнца обеспечивает протон-протонный цикл, а углеродно-азотный цикл доминирует в производстве энергии лишь в более массивных звездах.
Наверное, вы заметили, что само название углеродно-азотного цикла предполагает присутствие атомов углерода и азота в качестве катализаторов. Однако теория Бете не сумела показать, как именно сформировались во Вселенной эти самые углерод и азот, откуда они взялись. Бете размышлял над вероятностью, что углерод мог быть синтезирован из трех ядер гелия (ядро гелия состоит из двух протонов, а ядро углерода из шести). Однако, завершив расчеты, Бете сделал вывод, что «при нынешних условиях [то есть при плотностях и температурах, наблюдаемых в большинстве звезд, подобных Солнцу] нет никакой возможности постоянно производить в недрах звезд ядра тяжелее гелия»[300]. Поэтому вердикт Бете был таков: «Приходится признать, что более тяжелые [чем гелий] элементы были созданы до того, как звезды достигли нынешней температуры и плотности».
Вокруг этого заявления Бете разгорелись жаркие споры, поскольку астрономы и геофизики в то время полагали, что разные химические элементы по большей части должны иметь общее происхождение. В частности, тот факт, что атомы наподобие углерода, кислорода, азота и железа, судя по всему, распределены равномерно по всей галактике Млечный Путь, явно указывает на какой-то вселенский процесс формирования. Следовательно, чтобы принять вердикт Бете, физикам нужно было выяснить, в каком таком общем котле варились элементы до того, как звезды пришли в нынешнее равновесное состояние.
Казалось, теория завела в тупик и сейчас у всех опустятся руки, но тут неугомонный Георгий Гамов (которого друзья и коллеги звали Гео) и его студент Ральф Альфер высказали блистательную на первый взгляд мысль: что если элементы были созданы тогда, когда Вселенная пребывала в первоначальном состоянии и была очень плотной и горячей – то есть в момент Большого взрыва? Сама по себе концепция была до гениальности проста. В момент сверхплотного первичного фейерверка, по мнению Гамова и Альфера, вещество состояло из сильно сжатого нейтронного газа. Это первичное состояние они назвали илем – от древнегреческого yle и средневекового латинского hylem – «материя». Все эти нейтроны стали распадаться на протоны и электроны, и тогда и могли возникнуть все более тяжелые ядра – они последовательно захватывали по одному нейтрону из оставшегося океана нейтронов (а эти нейтроны впоследствии распадались на протоны, электроны и антинейтрино). Таким образом атомы, как предполагалось, стройными рядами двигались по таблице Менделеева, с каждым захваченным нейтроном взбираясь на ступеньку выше. Как предполагалось, весь этот процесс контролируется, с одной стороны, вероятностью, что конкретное ядро захватит еще один нейтрон, а с другой – расширением Вселенной (которое было открыто в конце 1920 годов, о чем мы поговорим в следующей главе). Космическое расширение вызвало общее уменьшение плотности материи со временем, а поэтому темпы ядерных реакций тоже снизились. Ральф Альфер, в то время аспирант Гамова, выполнил большую часть расчетов, и результаты были опубликованы[301] в номере «The Physical Review» за 1 апреля 1948 года (Гамов любил выпускать статьи в День дурака). Остроумец Гео подметил, что если он возьмет в соавторы статьи Ганса Бете (который на тот момент вообще не участвовал в его расчетах!), то три фамилии – Альфер, Бете, Гамов – будут соответствовать трем первым буквам греческого алфавита – альфа, бета, гамма. Бете согласился поставить свое имя, и эту статью часто так и называют – «алфавитная статья»[302]. В том же году Альфер в сотрудничестве с физиком Робертом Германом работал над расчетом температуры реликтового излучения, оставшегося после Большого взрыва, которое теперь называют космическим микроволновым фоновым излучением. Гео, который всю жизнь был страстным любителем каламбуров, в своей книге «Сотворение Вселенной» (G. Gamow. The Creation of the Universe