Открытие. Новейшие достижения в иммунотерапии для борьбы с новообразованиями и другими серьезными заболеваниями — страница 54 из 62

и. – Это неактивная форма рецептора IFNy, – объясняет Шрайбер. – У этой мыши очень большие трудности с работой клеточного иммунитета. Это значительный дефект, можно даже сказать, что у нее иммунодефицит.

12. Оказалось, что один из студентов в лаборатории Боба недавно придумал, как сделать мышь, вырабатывающую холостую форму интерферона-гамма, то есть такую, которая подключалась куда надо, но ничего не делала. Они пересадили опухоли Олда мышам с холостым интерфероном-гамма и нормальным мышам «дикого типа». А потом ввели обеим группам мышей фактор некроза опухоли. У нормальных мышей дикого типа ФНО убил модельные опухоли, а у мышей с неактивным интерфероном-гамма – нет.

13. «Закоренелые» иммунологи с репутацией не слишком-то много времени уделяли иммунологии опухолей. Да и вообще этим вопросом занимались немногие ученые. Так что на тех немногих представителей отрасли, которые получали результаты, смотрели с подозрением. Дело не в том, что их считали шарлатанами или чародеями: их результаты просто не всегда оказывались воспроизводимы в других лабораториях.

14. На самом деле ни на один вопрос невозможно полностью ответить или что-либо полностью доказать; теории поддерживаются, представленные доказательства приводят к выводам, а данные дают нам то, что можно назвать ответами на вопросы. Но предполагать, что на какой-либо вопрос уже дан полный и определенный ответ, – значит игнорировать всю историю науки.

15. Эрлих был весьма продуктивным ученым и считается, среди прочего, отцом современной иммунологии. Как указывает Артур М. Силверстейн во втором издании A History of Immunology, Эрлих работал в лаборатории Роберта Коха в Берлине и вдобавок к своим медицинским исследованиям всю жизнь интересовался взаимоотношениями между структурой молекул и их биологической функцией. Этот интерес и понимание структурной химии дали ему уникальную квалификацию, чтобы выдвинуть постулат о стереохимическом отношении – и уникальных способностях к связыванию – между антигенами и антителами. Более полное расширение этого образа мышления – его концепция идеального лекарства – это фундамент для механизма иммунитета и применения большинства лекарств. Эрлих утверждал, что если удастся произвести молекулу или соединение, которое будет притягиваться только к патогену или больной клетке, то эта молекула станет самонаводящейся ракетой или, на технологическом языке девятнадцатого века, «волшебной пулей» (magische Kugel), которая донесет свое ядовитое содержимое только до болезни, при этом не тронув носителя.

Преследуя эту цель, лаборатория Эрлиха проверила сотни различных веществ против многих болезнетворных бактерий. В конце концов он обнаружил «препарат 606», вещество, которое безопасно для людей, но при этом является смертельным ядом для спирохеты, вызывающей сифилис. Получившееся лекарство назвали сальварсаном, и он преобразил жизни многих людей. Эрлих известен прежде всего именно как создатель сальварсана, и в том числе за него вместе с Ильей Мечниковым он получил в 1908 году Нобелевскую премию по медицине и физиологии.

После смерти Эрлиха в 1915 году улица во Франкфурте, где располагалась его знаменитая лаборатория, была переименована в его честь; позже, когда к власти в Германии пришла Национал-социалистическая партия, ее снова переименовали в попытке стереть память страны о ее гражданах-евреях.

16. Коммерчески доступные лабораторные мыши – это сравнительно недавнее явление; большинство из них продает Джексоновская лаборатория в Бар-Харборе, штат Мэн, на острове Маунт-Дезерт. Современные лабораторные мыши происходят от разнообразных пород, которых любили заводить в качестве экзотических питомцев «мышиные энтузиасты» конца девятнадцатого – начала двадцатого веков, и они являются генетической смесью четырех основных подвидов мыши, разделенных средой обитания: Mus musculus domesticus (из Западной Европы), Mus musculus castaneus (из ЮгоВосточной Азии), Mus musculus musculus (из Восточной Европы) и Mus musculus molossinus (из Японии). По данным Джексоновской лаборатории, многие инбредные породы мышей происходят из колоний начала двадцатого века, созданных мисс Эбби Лэтроп, заводчицей мышей из молочного региона Грэнби, штат Массачусетс.

17. Этих мышей также называют «атимичными» или «с отсутствующей вилочковой железой».

18. В январе 2018 года ученые, работавшие с Паркеровским институтом иммунотерапии рака, объявили об открытии молекулы под названием BMP4, которая способствует восстановлению и даже регенерации тимуса у мышей. Результаты, опубликованные в Science Immunology, были получены в лаборатории доктора Марселя ван ден Бринка в Мемориальном онкологическом центре имени Слоуна-Кеттеринга в сотрудничестве с Джарродом Дудаковым из Онкологического исследовательского центра Фреда Хатчинсона. Далее BMP4 собираются испытывать на людях для возможной разработки лекарства, которое придаст новые силы вилочковой железе и повысит качество T-клеточной реакции. Тимус может быть поврежден заболеваниями и с возрастом уменьшается; существует теория, что, возможно, именно из-за этого престарелые люди больше страдают от некоторых видов рака. См. Tobias Wertheimer et al., «Production of BMP4 by Endothelial Cells Is Crucial for Endogenous Thymic Regeneration», Science Immunology, 2018, 3:aal2736.

19. В таких экспериментах главное – правильный выбор времени, и очень важно не случайно выставить ученого, который занимается хорошей наукой и проводит жесткие скептические проверки научных теорий – чем, собственно, и должны заниматься учеными, – в злодейском свете. Статмен использовал голых мышей, атимичных мышей. Он был прав, утверждая, что у них нет тимуса, что именно в тимусе зарождаются T-лимфоциты и – даже в 1974 году, – что именно T-лимфоциты отвечают за адаптивную иммунную реакцию. Но Статмен не знал – и никто тогда не знал, – что у этих мышей сохранились другие клетки, принадлежавшие неадаптивной иммунной системе, так называемые «натуральные киллеры». Их можно считать пехотинцами первой линии иммунной защиты организма, они совершенно не похожи на тренированных элитных «спецназовцев» T-клеточной армии, особенно «серийных убийц», T-киллеров с белком CD8, но они все равно присутствуют в организме и умеют убивать самых простых и очевидных незваных гостей. Это значит, что он не учел вероятности, что в организмах экспериментальных мышей все равно действует иммунный надзор. И, что, наверное, еще важнее, конкретная порода голых мышей, которых использовал Статмен, была невероятно уязвимой к развитию опухолей от использованного им канцерогена.

Возможно, организм этих мышей просто был полностью подавлен развитием опухолей, которые развивались с такой скоростью, что с ними не смог бы совладать даже самый лучший иммунный надзор.

20. Osias Stutman, «Delayed Tumour Appearance and Absence of Regression in Nude Mice Infected with Murine Sarcoma Virus», Nature, 1975, 253: 142–144, doi:i0.i038/253i42a0.

21. Позже обнаружилось, что голые мыши – вовсе не такие голые, как считалось; у них все же есть небольшое количество Т-лимфоцитов и «натуральные киллеры», роль которых в иммунном надзоре все еще неясна. Кроме того, порода голых мышей, которую использовал Статмен, как позже оказалось, была особенно уязвима к 3-метилхолантрену, особенно в больших дозах, которые использовал Статмен: такие дозы вызывали раковые мутации даже в самых крепких иммунных системах.

22. Можно было сделать мышь без рецептора гамма-интерферона. Или сделать мышь, в которой не было сигнального белка, необходимого для функционирования гамма-интерферона. Такую мышь они, собственно, уже сделали в лаборатории Боба. Был еще и третий вариант – нокаутная мышь. Можно было использовать мышь, у которой вообще нет лимфоцитов – ни Т-, ни B-клеток, и, соответственно, нет адаптивного иммунитета. Эти мыши им тоже были доступны; они называются «RAG-нокаутные мыши», и у них отключен ген выработки лимфоцитов.

23. Ключ к качеству эксперимента – к исключению «мусора на входе» – состоял в том, чтобы гарантировать, что ни одна из использованных пород мышей не будет особенно уязвима для выбранного канцерогена, как вышло у Статмена, а также рассчитать минимально эффективную для вызывания рака дозу канцерогена. Статмен, сам того не желая, подавил организмы своих мышей такими дозами, с которыми не справилась бы самая здоровая иммунная система.

24. – Еще одна проблема состояла в том, что нам выдвигали аргумент: «Эй, я онкологический биолог, и я делаю онкогеновые опухоли, и я ни разу не видел, чтобы иммунная система реагировала на онкогеновые опухоли, – говорит Шрайбер. – Мы лишь недавно обнаружили, что эти онкогеновые опухоли – экспериментальные, модельные опухоли, – практически не дают мутаций. Так что если они не слишком иммуногенные, то только потому, что у них нет неоантигенов.

25. Шрайбер: «Ну, вы знаете, можно удалить опухоль – это будет устранение. Можно модифицировать ее, чтобы она сохранилась в виде, скажем так, идеи, чтобы она… не знаю, уснула – это называется равновесием. А еще ее можно изменить, так же, как вы меняете сценарий, чтобы из нее вышла опухоль более хорошего качества».

26. Это тоже превратилось в статью в журнале Nature.

27. «Мы стали смотреть на пересаженные нами in vivo опухоли и отмечать их прогресс и регресс, используя геномный подход».

28. «У одной опухоли была очень заметная мутация в сильно экспрессируемом белке. Белок присутствовал до того, как мы пересадили опухоль животному, но затем исчез в опухолевых клетках, которые выросли из нее [то есть дочерних клетках из пересаженной опухоли]. Оказалось, что этот неоантиген заметила иммунная система, и произошло спонтанное отторжение опухоли. И постепенно это переросло в «О, да это неплохая мысль», потому что оказалось, что T-лимфоциты, которые активируется антителами контрольных точек вроде PD-1 и CTLA-4, эти T-лимфоциты действовали против специфических опухолевых неоантигенов».