Откуда мы знаем, что такое точка? — страница 5 из 7

n элементов по k элементов.

Соображения вида (3) обычно считаются само собой разумеющимися и, как правило, опускаются в разделах, посвященных комбинаторике. Однако, на наш взгляд, проведенное рассуждение заслуживает большего внимания и, быть может, даже специального названия – например, «обобщенного правила произведения».

Разобранную выше задачу можно слегка видоизменить, причем изложенный выше прием снова продемонстрирует свою полезность.

Задача 2. Имеется 5 одуванчиков и 19 репейников. Сколькими способами можно составить из них букет, состоящий из десяти цветков и содержащий не менее трех одуванчиков?

Ответ:

10. О НЕКОТОРЫХ ТРУДНОСТЯХ
В ПРЕПОДАВАНИИ ЛОГИКИ

Каждый педагог, ведущий начальный курс логики, сталкивается с необходимостью иллюстрировать логические законы на примерах, взятых из естественного языка. Здесь, однако, преподавателя логики подстерегают трудности, связанные с тем, что язык логики и естественный язык – неизоморфны.

Пример 1. Попробуем проиллюстрировать закон де Моргана

(1)

(Здесь символы , и обозначают соответственно отрицание, конъюнкцию и дизъюнкцию высказываний.)

Рассмотрим высказывание

«Я не буду поступать в МГУ и в МПГУ». (2)

По вышеприведенному закону де Моргана высказывание (2), казалось бы, следует понимать так:

«Я не буду поступать в МГУ или я не буду поступать в МПГУ», т.е.

«Я не буду поступать хотя бы в одно из этих учебных заведений». (3)

Однако, в естественном языке фраза (2) имеет вполне определенный смысл, не совпадающий с (3). А именно, смысл (2) таков:

«Я не буду поступать в МГУ и я не буду поступать в МПГУ». (2)

Таким образом, использовать примеры вида (2) для иллюстрации упомянутого выше закона де Моргана – нельзя.

Еще более интересная ситуация возникает, когда мы имеем дело с высказываниями, содержащими кванторы общности и существования .

Пример 2. Рассмотрим, например, следующий закон отрицания высказываний с квантором общности

(4)

заметим при этом, что «утверждение»

«» (4а)

является грубой ошибкой.

Попробуем теперь проиллюстрировать закон (4), отрицая высказывание:

«Каждый сумеет решить эту задачу». (5)

В соответствии с законом (4), правильно построенное отрицание имеет вид:

«Найдется человек, который не сумеет решить эту задачу». (6)

Однако, вопреки тому, что (4а) является грубой ошибкой, высказывание:

«Каждый – не сумеет решить эту задачу» (6а)

является вполне допустимым в естественном языке отрицанием высказывания (5).

Приведенные выше примеры говорят о том, что иллюстрации к законам логики, взятые из естественного языка, следует подбирать с осторожностью, а сам факт отсутствия изоморфизма между языком логики и естественным языком – следует подчеркнуть в самом начале вводного курса логики.

11. НЕСУЩЕСТВУЮЩИЕ ОБЪЕКТЫ
И МАТЕМАТИЧЕСКАЯ ЛОГИКА

Выше мы уже говорили о том, что в преподавании начального курса логики имеются своеобразные трудности, связанные с отсутствием изоморфизма между естественным языком и языком, на котором написаны логические формулы.

Сейчас эта тема будет продолжена в несколько ином направлении.

Как хорошо известно, в математике не существует запрета на введение (временных) обозначений для несуществующих объектов. Например, если требуется решить в целых числах уравнение

31x + 572= 1000,

то через x обозначают искомое (несуществующее) целочисленное решение, и лишь затем убеждаются, что такого решения нет.

Строго говоря, здесь следовало бы рассуждать от противного; однако, даже рассуждая со всей строгостью от противного, мы по-прежнему вынуждены вводить обозначение x для несуществующего объекта.

Здесь мы коснемся этого же вопроса применительно к преподаванию темы «Высказывания» в курсе логики. Разбирая эту тему, преподаватель неизбежно сталкивается с несуществующими объектами, которые ведут себя довольно парадоксальным образом.

Рассмотрим, например, высказывание:

Все Деды-Морозы делают подарки детям. (1)

Это высказывание, очевидно, следует считать истинным. Действительно, его отрицание выглядит следующим образом:

Существует Дед-Мороз, который не делает подарков детям. (2)

(Поскольку Дед-Мороз не существует, высказывание (2) – ложно, и, значит, высказывание (1) истинно.) В высказывании (1) мы имеем дело с (пустым) множеством, состоящим из всех Дедов-Морозов; ситуация радикально меняется, если мы имеем дело не с множеством, а с «единичным объектом», которого на самом деле не существует.

Действительно, рассмотрим теперь такое высказывание:

Дед-Мороз принес подарок Васе. (1)

Однако (1) в отличие от (1), очевидно, ложно! Дело в том, что (1), в сущности, следует рассматривать не как простое, а как составное высказывание:

Дед-Мороз существует и Дед-Мороз принес подарок Ване. (1)

Итак, здесь мы вновь столкнулись с неизоморфностью естественного языка и языка формальной логики, о чем, без сомнения, следует помнить преподавателю.

12. ИМПЛИКАЦИЯ И ВРЕМЯ

Теперь мы обсудим некоторые довольно любопытные вопросы, касающиеся взаимодействия хода логических рассуждений с ходом времени.

Общеизвестно, что никакое минимально содержательное рассуждение в естественном языке не может обойтись без слов «если…, то…». В логике аналогом этого союза является операция импликация.

Напомним, однако, что в отличие от естественной речи, где союз «если …, то…» применяется к парам высказываний, связанным по смыслу, имитирующая этот союз импликация применима к любой паре высказываний, независимо от того, связаны эти высказывания по смыслу или нет.

В частности, в силу введенного в формальной логике определения, условились считать истинными не только такие высказывания как «Если данное число делится на 9, то оно делится на 3»,но и высказывания вида: «Если дважды два – четыре, то Волга впадает в Каспийское море», а также высказывания, составленные из таких пар, в которых первое из двух утверждений (посылка) ложно: «Если дважды два – пять, то Волга впадает в Каспийское море»; «Если дважды два – пять, то Волга впадает в Аральское море».

Может показаться, что импликация (обычно обозначаемая стрелкой →) представляет собой безобидное непосредственное обобщение союза «если…, то…». Но тогда логические законы, справедливые для операции →, казалось бы, не должны приводить к противоречию, если пользоваться ими в естественной речи.

Одним из таких законов является закон контрапозиции, утверждающий, что при любых истинностных значениях высказываний А и В высказывания А → В и (не В) → (не А) равносильны (т.е. одновременно истинны или одновременно ложны).

Рассмотрим теперь общеизвестную истинную импликацию

«Если ветер дует, то деревья качаются». (1)

Тогда высказыванием, противоположным к обратному (по отношению к (1)), очевидно, будет

«Если деревья не качаются, то ветер не дует». (1)

В полном соответствии с законом контрапозиции это высказывание также оказывается истинным.

Посмотрим теперь, что будет, если мы переформулируем оба утверждения (1) и (1) в прошедшем времени. Тогда наши утверждения примут соответственно вид

«Если ветер дул, то деревья качались»; (2)

«Если деревья не качались, то ветер не дул». (2)

Вновь оба утверждения оказались истинными (и закон контрапозиции по-прежнему не нарушен).

Сформулируем теперь наши высказывания в будущем времени. Казалось бы, ничто не предвещает «краха» закона контрапозиции. Однако, мы получаем следующий довольно странный результат:

«Если ветер будет дуть, то деревья будут качаться»; (3)

«Если деревья не будут качаться, то ветер не будет дуть». (3)

Неужели закон контрапозиции неверен?

Объяснение кажущегося парадокса состоит в следующем.

В естественном языке мирно сосуществуют два различных по смыслу союза «если…, то…». Первый из них, который мы назовем логическим следованием, фактически утверждает:

«Если А, то одновременно с А имеет место и В».

Второй из упомянутых союзов, который мы назовем причинным следованием, в развернутом виде утверждает нечто иное:

«Если с некоторого момента А, то вскоре после этого имеет место и В».

Операция →, с которой мы имели дело всюду выше, представляла собой обобщение именно логического следования. Закон контрапозиции, справедливость которого установлена в формальной логике для операции →, вне всякого сомнения верен и для этого первого смыслового значения союза «если…, то…». При этом использование будущего времени при формулировке высказываний А и В никак не влияет на справедливость закона контрапозиции для операции логического следования. Например, одновременно истинны высказывания:

«Если число, которое ты задумаешь, будет делиться на 9, то оно будет делиться и на 3»