Отпечатки жизни. 25 шагов эволюции и вся история планеты — страница 13 из 66

Среди других первопроходческих послевоенных операций была и вторая экспедиция «Галатея», проведённая датчанами с 1950 по 1952 год. Корабль назвали в честь героини древнегреческого мифа о Пигмалионе и Галатее. По сюжету мифа скульптор Пигмалион изваял из мрамора прекрасную женщину, которую назвал Галатеей, и влюбился в неё. Он был настолько очарован своим творением, что боги оживили Галатею, вняв его молитвам. Некоторым здесь вспомнится сюжет бродвейского мюзикла «Моя прекрасная леди», в котором профессор Генри Хиггинс (Пигмалион) преображает бедную девушку из трущоб Элизу Дулиттл (Галатею) в изысканную аристократку. Мюзикл, в свою очередь, поставлен на основе знаменитой пьесы Джорджа Бернарда Шоу «Пигмалион», где обыгран сюжет древнегреческого мифа.

Первая экспедиция «Галатея» состоялась в 1845–1847 годах. Её выполнил трёхмачтовый парусник, перед экипажем которого поставили задачу исследовать воды, омывающие крупнейшие датские колонии по всему миру. В 1941 году журналист Хакон Мильхе и океанограф-ихтиолог Антон Фредерик Брунн добивались финансирования для другой экспедиции, преследовавшей научные и коммерческие цели. Однако Вторая мировая война и вторжение в Данию нацистов вынудили отложить экспедицию.

В июне 1945 года, сразу после окончания войны, датское научное сообщество возобновило привлечение значительных средств и начало строить большие планы. Учёные приобрели снятый со службы британский сторожевой корабль «Лит». Это было судно с долгой и славной историей сопровождения других кораблей через Атлантику в годы войны, топившее подлодки. Датчане переоснастили его для океанографических целей и переименовали в «Галатея-2». В отличие от первой «Галатеи», этот корабль был рассчитан на глубоководные исследования, вычерпывание осадка с океанического дна и промер максимальных глубин. Корабль побывал в некоторых местах, которые посещала и экспедиция середины XIX века, но главным достижением второй экспедиции стало драгирование вод на глубине 10 190 метров в Филиппинском жёлобе (на тот момент это были самые глубоководные из всех добытых образцов), а также во многих других глубинных районах океана. Так удалось добыть существ, ранее не попадавшихся учёным.

Вместе со многими эффектными и причудливыми глубоководными рыбами, другими морскими созданиями тогда был открыт занятный моллюск, добытый в 1952 году на глубине более 6000 метров в Центральноамериканском жёлобе (рис. 6.3). Когда зоолог Хенниг Лемхе в 1957 году опубликовал работу об этом организме, он понимал, что это поистине революционная находка, и назвал моллюска Neopilina galatheae — в честь окаменелости пилина и корабля, позволившего сделать открытие. Действительно, моллюск был родственником таинственных колпачковидных окаменелостей из раннего палеозоя, и по его мягким тканям палеонтологи смогли интерпретировать таинственные рубцы и отметины на ископаемых образцах. Знаменитый зоолог Энрико Швабе назвал это животное «величайшей сенсацией XX века».

Рис. 6.3. «Живое ископаемое» неопилина, реликт раннего кембрия, переходная форма между кольчатыми червями и моллюсками. (А) сегментированные парные жабры по обе стороны от ноги в центральной части тела. Также имеются парные сегментированные сократительные мускулы и другие системы органов; (БВ) ныне живущие неопилины (иллюстрации предоставлены J. B. Burch, Мичиганский университет)


Лемхе указывал, что неопилина — настоящее «живое ископаемое», реликтовый род из класса моллюсков моноплакофор (Monoplacophora; в переводе с греческого — несущий одну раковину), которые исчезли из палеонтологической летописи в девоне. А какую удивительную информацию принесло изучение этого образца! Именно там, где на окаменелостях находились два ряда рубцов, неопилина имела парные мускулы, от которых и оставались рубцы. Это свидетельствовало, что мускулы у такого моллюска сегментированы, как у кольчатых червей. Оказалось, что у неопилины сегментированы не только мускулы, но и жабры, почки, несколько сердец, парные нервные цепи и гонады. В общем, неопилина демонстрирует, что таинственные окаменелости-моноплакофоры принадлежали полумоллюскам-получервям: эти существа имели сегментированное тело и все системы органов, в точности как у их червеподобных предков, но также обладали мантией, раковиной, широкой ногой и другими чертами, присущими примитивным раковинным моллюскам — например, хитонам и блюдечкам.

С тех пор как неопилину описали в 1957 году, было найдено много живых и ископаемых моноплакофор. В настоящее время известно 23 ныне живущих вида этого класса. Такие «живые ископаемые» встречаются в основном на глубинах от 6000 до 6500 м, но некоторые обитают и в гораздо более мелких водах — всего на 175-метровой глубине. Об их среде обитания известно мало, поскольку они живут глубоко и погибают вскоре после того, как их отлавливают и извлекают на поверхность, где давление и температуры сильно отличаются от условий глубокого океана. Предполагается, что моноплакофоры питаются на илистом грунте, выцеживая питательные вещества из донных отложений и захватывая опускающийся на эти глубины планктон. Это характерно для большинства организмов, живущих там, где очень темно и не может происходить фотосинтез.

Как такая важная группа животных могла долго ускользать от внимания учёных? Основная причина в том, что у нас почти не было средств для сбора и изучения организмов из глубочайших частей океана. Вторая экспедиция «Галатея» стала одной из первых, взявшихся за решение данной задачи. На самом деле ныне живущая моноплакофора Veleropilina zografi была открыта ещё в 1896 году, но этого моллюска ошибочно причислили к обычным блюдечкам и забыли. Учёные повторно исследовали её только в 1983 году и осознали, что их коллеги-предшественники видели живую моноплакофору задолго до того, как была открыта неопилина.

Открытие неопилины является одним из классических примеров того, как загадочная группа ископаемых животных, долго считавшихся исчезнувшими, в целости и сохранности повторно обнаруживалась в глубинах океана. Ещё важнее, что описание многих ныне живущих и вымерших моноплакофор показывает, как моллюски эволюционировали от общего предка, роднящего их с кольчатыми червями, а затем утратили сегментацию и разделились на одностворчатых, двустворчатых, головоногих и другие классы этого важного типа. Соответственно, палеонтологическая летопись подкрепляет результаты исследований в области анатомии и молекулярной биологии: моллюски произошли от кольчатых червей, а представители класса моноплакофор — переходные формы, демонстрирующие макроэволюцию от типа к типу.

Дополнительная литература

Ghiselin, Michael T. The Origin of Molluscs in the Light of Molecular Evidence // Oxford Surveys in Evolutionary Biology. — 1988. — Vol. 5. — 66–95.

Giribet, Gonzalo, Akiko Okusu, Annie R. Lindgren, Stephanie W. Huff, Michael Schrödl, and Michele K. Nishiguchi. Evidence for a Clade Composed of Molluscs with Serially Repeated Structures: Monoplacophorans Are Related to Chitons // Proceedings of the National Academy of Sciences. — 2006. — Vol. 103. — 7723–7728.

Morton, John Edward. Molluscs. — London: Hutchinson, 1965.

Passamaneck, Yale J., Christoffer Schander, and Kenneth M. Halanych. Investigation of Molluscan Phylogeny Using Large-subunit and Small-subunit Nuclear rRNA Sequences // Molecular Phylogenetics and Evolution. — 2004. — Vol. 32. — 25–38.

Pojeta, John, Jr. Molluscan Phylogeny // Tulane Studies in Geology and Paleontology. — 1980. — Vol. 16. — 55–80.

Runnegar, Bruce. Early Evolution of the Mollusca: The Fossil Record // John D. Taylor, ed. Origin and Evolutionary Radiation of the Mollusca. — Oxford: Oxford University Press, 1996. — P. 77–87.

Runnegar, Bruce, and Peter A. Jell. Australian Middle Cambrian Molluscs and Their Bearing on Early Molluscan Evolution // Alcheringa. — 1976. — Vol. 1. — 109–138.

Runnegar, Bruce, and John Pojeta Jr. Molluscan Phylogeny: The Paleontological Viewpoint // Science. — 1974. — October 25. — P. 311–317.

Salvini-Plawen, Luitfried V. Origin, Phylogeny, and Classification of the Phylum Mollusca // Iberus. — 1991. — Vol. 9. — 1–33.

Sigwart, Julia D., and Mark D. Sutton. Deep Molluscan Phylogeny: Synthesis of Palaeontological and Neontological Data // Proceedings of the Royal Society. — 2007. — Vol. В 247. — 2413–2419.

Yonge, C. M., and T. E. Thompson. Living Marine Molluscs. — London: Collins, 1976.


07. Растущие из моряПроисхождение наземных растенийКуксония

Наиболее убедительное доказательство эволюции флоры — растительная палеонтологическая летопись. Глубоко в земной коре остались свидетельства последовательного развития и изменений, которые за миллионы лет претерпели разные группы царства растений. Каждый год палеоботаники извлекают новые ископаемые образцы, помогающие добавить ещё несколько элементов в картину, которая, как мы надеемся, однажды сложится в непрерывную историю развития царства растений — от эпохи, отстоящей от нас более чем на миллиард лет, до сегодняшнего дня. За этот долгий период в растительном мире произошли коренные изменения. Целые классы возникали, переживали расцвет и исчезали; без палеонтологической летописи современные ботаники даже не подозревали бы, что такие группы растений когда-то существовали.

Теодор Делеворьяз. «The Little Things that Run the World»

Мы любуемся изумительными лесами и саваннами Земли и прославляем «зелёную планету», которая изобилует растительностью, обеспечивающей существование самых разнообразных животных. Но так было не всегда. На протяжении большей части 4,5 млрд лет в истории Земли наша планета была пустынным и негостеприимным местом. Не существовало наземных растений, которые могли бы выжить на её бесплодной поверхности. Поэтому голые породы подвергались интенсивной химической эрозии, все их питательные вещества утекали в океан, причём морские организмы не могли их потреблять. Первые 1,5 млрд лет в истории жизни на Земле единственными фотосинтезирующими организмами были сине-зелёные бактерии (цианобактерии), обитавшие на океаническом мелководье и формировавшие строматолиты (см. главу 1). Затем, около 1,8 млрд лет назад, появились первые признаки существования водорослей — настоящих растений с эукариотическими клетками (имеют чётко выраженное ядро для хранения ДНК, а также органеллы — например, хлоропласты, в которых протекает фотосинтез). Цианобактерии и водоросли продолжили образовывать на морском мелководье огромные илистые подушки.