В 2000 году было открыто место, позже названное Птичьим карьером, где к 2003 году удалось найти множество фрагментарных рыбьих окаменелостей. В 2004 году учёные углубились на три метра в подповерхностные породы и открыли ископаемое, оправдавшее все тяготы. Шубин с коллегами выбрали для него название тиктаалик, что в переводе с инуктитута, одного из эскимосских языков, значит налим. Лишь спустя ещё два года эти окаменелости как следует препарировали для исследований, были готовы все анализы и описания, после чего о тиктаалике впервые объявили в статье, опубликованной в 2006 году. Описание его задних конечностей увидело свет в 2012-м.
Удалось добыть более 10 особей тиктаалика, от 1 до 3 м в длину (рис. 10.3). Более того, самый полный экземпляр тиктаалика сохранился практически целиком, в нём недостаёт лишь фрагментов хвоста и задних конечностей, но задние конечности хорошо изучены по другим экземплярам. Как и следовало ожидать от существа, жившего на 12 млн лет раньше ихтиостеги и акантостеги, тиктаалик больше напоминает рыбу по многим признакам. В его лопастевидных плавниках есть все элементы, из которых впоследствии развились конечности земноводных, однако вместо пальцев — всё ещё плавниковые лучи. У него рыбья чешуя, одновременно присутствуют (как у большинства ихтиофибий) жабры (узнаваемые по костям жаберной дуги) и лёгкие (распознаваемые по брызгальцам в голове). Нижняя челюсть и нёбо у него тоже рыбьи. Но, в отличие от любых рыб, у него есть земноводные черты: укороченный уплощённый череп с подвижной шеей; бороздки в задней части черепа для расположенных там барабанных перепонок; крепкие рёбра, а также мощные конечности, плечевые и тазовые кости. Плавники тиктаалика, как и у акантостеги, были недостаточно гибкими и сильными, чтобы он мог далеко ползать по земле или ходить, отрывая брюхо от грунта. Плавники же, вероятно, лишь позволяли животному плескаться в воде и поддерживали тиктаалика, так что он мог осмотреться над поверхностью. Подобно многим другим ихтиофибиям (а также многим современным амфибиям, особенно тритонам и саламандрам), тиктаалик, наверное, большую часть времени проводил в воде, охотясь по берегам ручьёв, в которых обитал.
Рис. 10.3. Тиктаалик: (А) скелет; (Б) реконструкция внешнего вида (иллюстрации предоставлены N. Shubin)
Вот как писал о нём Роберт Холмс в журнале New Scientist:
Спустя пять лет раскопок на острове Элсмир, на крайнем севере территории Нунавут, они наконец нашли сокровище: несколько рыб, сохранившихся так превосходно, что их скелеты были совершенно целы. Изучая эти экземпляры, команда Шубина, к всеобщему восторгу, обнаружила, что перед ними — как раз недостающее переходное звено, которое они искали. «Мы нашли существо, которое как нельзя чётко отделяло рыб от амфибий», — сказал Дэшлер.
Клэк отметила: « Это одна из тех находок, которую можно показать и заявить: “Говорил же вам, она должна быть!” — и вот она перед вами».
Поиск «ещё более переходных» ископаемых продолжался. Но одно стало очевидным: выход из воды на сушу не был резким скачком, каким его представляли биологи на протяжении более ста лет. Достаточно обратить внимание на широчайшую эволюционную радиацию лучепёрых рыб (Actinopterygii), к которым относятся 99% особей в рыбных садках, на рыбных рынках и в больших аквариумах. Все современные рыбы, за исключением миног, миксин, акул, скатов, двоякодышащих и целакантов, относятся к лучепёрым. У них нет таких крепких костей, как у лопастепёрых рыб; их плавники поддерживаются благодаря длинным и тонким костным или хрящевым стержням.
Лучепёрые рыбы научились по-разному передвигаться на суше, используя свои слабенькие плавники. Например, илистые прыгуны живут отчасти в воде, отчасти на суше, обитая в мелководных заводях и среди корней мангров. На передних плавниках они могут медленно ползать на границе суши и воды (рис. 10.4). Лягушковый клариевый сом — просто напасть на юго-востоке США, так как может ползать по суше от пруда к пруду, чтобы искать пищу или спасаться из высыхающих водоёмов. Рыба-ползун тоже может рыскать по суше в поисках более уютных водоёмов и даже забираться на деревья. Многие рыбы, в частности бычковые и скорпены, приспособились жить в приливных заводях и во время отлива проводят некоторое время на воздухе. Их передние плавники видоизменились, на них можно ползать и перебираться через камни. Другие рыбы, ведущие в основном водный образ жизни, превратили лучи передних плавников в «пальцы»: с их помощью рыба может закапываться в подводный грунт и толкать себя вперёд.
Рис. 10.4. Илистый прыгун кормится червями на литорали в Японии (фотография Alpsdake, фонд Wikimedia Commons)
Между разными группами лучепёрых рыб отсутствует близкое родство, поэтому описанные адаптации к жизни на суше развились независимо друг от друга. Разумеется, только из-за серьёзного прессинга и в погоне за большими преимуществами рыбы начали проникать в наземные экосистемы (пусть всего на минуты или часы). Постепенные изменения лопастепёрых рыб, сначала превратившихся в полуводных, а затем — в настоящих наземных животных, не так уж невозможны, как раньше казалось учёным.
Недавно группа учёных под руководством Эмили Стэндэн опубликовала исследование, продемонстрировавшее, насколько легко рыба может выйти из воды. Эксперимент провели на очень слаборазвитой костной рыбе — многопёре (Polypterus) из Африки, которая находится в отдалённом родстве с такими примитивными лучепёрыми рыбами, как осетровые и веслоносовые. Плавники многопёра сильно напоминают плавники древнейших лопастепёрых рыб, он практически является переходным звеном между лопастепёрыми и лучепёрыми. Исследователи выращивали многопёров на суше, а не в их обычной водной среде обитания (эти рыбы хорошо дышат воздухом).
Действительно, спустя несколько поколений потомки этих рыб стали более крепкими и лучше приспособились ползать по земле благодаря так называемой адаптационной гибкости, позволяющей животным видоизменяться на эмбриональном этапе развития и приспосабливаться к новым условиям. Как указывает Стэндэн, адаптационная гибкость позволяет не только ответить на вопрос, почему столь многие лучепёрые рыбы научились ползать по земле, но и объясняет механизмы, благодаря которым это же удалось лопастепёрым рыбам.
Итак, у нас есть непрерывная последовательность ихтиофибий — от существ, которые были настоящими рыбами (например, лопастепёрые), до тиктаалика и акантостеги и далее до других животных, которые ещё сильнее напоминали амфибий (см. рис. 10.5). Всем, кому кажется невероятным, что рыба могла выползти из воды и стать сухопутным животным, достаточно взглянуть на эти невероятные окаменелости — и всё понять.
Рис. 10.5. Происхождение земноводных от рыб (рис. Карла Бьюэлла из работы Donald R. Prothero. Evolution: What the Fossils Say and Why It Matters. — New York: Columbia University Press, 2007. — Fig. 10.6)
Лучше один раз увидеть!
Насколько мне известно, немногочисленные окаменелости ихтиостеги и акантостеги экспонируются только в Зоологическом университетском музее Кембриджского университета и Шведском музее естественной истории, расположенном в Стокгольме.
В некоторых музеях США можно увидеть отпечатки скелета и реконструкции тиктаалика. В частности, это Академия естественных наук Дрексельского университета (Филадельфия), Музей естественной истории под открытым небом (Чикаго), Музей сравнительной зоологии Гарвардского университета (Кембридж, штат Массачусетс) и Музей естественной истории и науки Цинциннати. Одни из лучших окаменелостей лопастепёрых рыб и древних амфибий находятся в Американском музее естественной истории в Нью-Йорке.
Дополнительная литература
Шубин Н. Внутренняя рыба: история человеческого тела с древнейших времён до наших дней. — М.: Астрель; Corpus, 2010.
Clack, Jennifer A. Gaining Ground: The Origin and Early Evolution of Tetrapods. — Bloomington: Indiana University Press, 2002.
Daeschler, Edward B., Neil H. Shubin, and Farish A. Jenkins Jr. A Devonian Tetrapod-like Fish and the Evolution of the Tetrapod Body Plan // Nature. — 2006. — April 6. — P. 757–763.
Long, John A. The Rise of Fishes: 500 Million Years of Evolution. — Baltimore: Johns Hopkins University Press, 2010.
Maisey, John G. Discovering Fossil Fishes. — New York: Holt, 1996.
Moy-Thomas, J. A., and R. S. Miles. Palaeozoic Fishes. — Philadelphia: Saunders, 1971.
Shubin, Neil H., Edward B. Daeschler, and Farish A. Jenkins Jr. The Pectoral Fin of Tiktaalik roseae and the Origin of the Tetrapod Limb // Nature. — 2006. — April 6. — P. 764–771.
Zimmer, Carl. At the Water’s Edge: Macroevolution and the Transformation of Life. — New York: Free Press, 1998.
11. «Лягомандра»Происхождение лягушекГеробатрахус
Теории приходят и уходят. Лягушка остаётся.
«Человек — свидетель потопа»
В начале XVIII века учёные ещё придерживались полярных мнений о происхождении окаменелостей и предлагали многочисленные объяснения присутствия этих странных объектов в горных породах. Латинское слово fossilis буквально переводится как ископаемое. То есть что угодно, извлечённое из-под земли, в том числе кристаллы, самородки и другие небиологические объекты изначально приравнивались к окаменелостям. Некоторые учёные полагали, что окаменелости — творения дьявола, заложенные в скалах, чтобы смутить верующих и посеять сомнения. Другие утверждали, что они могли вырасти в камне под действием таинственных формообразующих сил (vis plastica) или что какие-то существа заползли в скальные трещины, были там раздавлены и погибли, а их скелеты замурованы. И очень немногие связывали фоссилизированные останки двустворчатых и одностворчатых моллюсков с их современными потомками.