в третий еще легче и так далее. Происходит проторение нервных путей и укрепление нервных связей соответствующего типа - морфофизиологических аналогов ассоциаций. Синапсы превращаются в пропускные пункты, отдающие предпочтение знакомым импульсам, а группа нейронов, соединенная такими синапсами, становится носителем определенного следа. Приняв эту гипотезу, мы легко представили себе не только самоусиление следов, но и всякое воспоминание. Желая припомнить что-нибудь, мы возбуждаем в мозгу электрическую активность; сначала она носит общий характер, затем импульсы находят свои цепи, и в сознании оживают требуемые следы. Пути, которые проторяют себе новые импульсы, могут лежать поблизости от путей, проторенных сходными импульсами; от активности одних путей активизируются соседние, и сознание получает искомое в сопровождении следов-спутников, которые могут даже опередить искомое. Тогда вместо фамилии Овсов нам в голову приходят другие лошадиные фамилии, и мы терпеливо ждем, пока Овсов не прорвется через них. Но раз так, раз цепей с близким сопротивлением оказывается много и на свидание с новым символом могут, как это случается при афазии или при общем возбуждении явиться десятки эталонов, значит должен существовать оценочный механизм, который управляет сравнением следов. Получая сигналы от возбудившихся зон, от следов готовых ожить в памяти, он должен оценить их, погасить ненужные, а нужные направить в фокус сознания. Не па него ли натолкнулся однажды Пенфилд, когда, раздражая электродом в глубине височной доли один участок, вызвал у пациента «сравнивающе-истолковывающие» мысли?
К тому времени, когда это случилось, внимание физиологов уже было приковано к структуре, которая примыкает непосредственно к височным долям и называется гиппокампом. Анатомы относят его к древней коре, над которой у нас выросла новая; подобно ей он тоже состоит из двух половинок. По нашей классификации мы должны отнести его к энергетическому блоку: он ближайший сосед гипоталамуса и ретикулярной формации. Первыми о гиппокампе узнали неврологи; прежде всего им стала известна разница между двусторонним поражением гиппокампа и односторонним. При одностороннем у человека нарушается отсроченное воспроизведение и возникают неполадки в сфере эмоций; если же патологический процесс захватывает обе половинки, у него наблюдаются все признаки корсаковского синдрома, а у многих наступает и ретроградная амнезия. Ретроградную амнезию обнаружил все тот же Пенфилд. Он исследовал одного больного с очаговой эпилепсией и по ЭЭГ нашел источник его страданий - рубец около левой половинки гиппокампа. Очевидно, это был след кровоизлияния, вызванного акушерскими щипцами. Пенфилд перерезал половинку, удалил очаг эпилепсии, припадки прекратились, но пациент нежданно-негаданно приобрел ретроградную амнезию длиной в четыре года и антероградную в придачу. Потом ретроградная съежилась, следы «самоусилились», а антероградная так и осталась. В чем же было дело? Оказывается, правая половинка из-за внутренних кровоизлияний давно вышла из строя. Случай редкий, но он многое объяснил неврологам. Применительно к процессам памяти, решили они, нет смысла говорить о гиппокампе - правильнее будет говорить о гиппокамповом круге. Ни один орган в мозгу не работает изолированно, а отделы первого блока в особенности связаны друг с другом. Тем же уровнем бодрствования управляет не одна ретикулярная формация, а целая система, захватывающая, кроме нее, и гипоталамус, и таламус, и пути к коре, и саму кору. Когда же происходит двустороннее поражение гиппокампа, то разрывается круг, включающий в себя, кроме половинок гиппокампа, и ядра таламуса, и части лобных долей, и своды, и поясную извилину, и маммилярные тела, и гипоталамус. И все это связано с ретикулярной формацией и с корой. Оживленный перекресток магистралей, или, лучше сказать, диспетчерский пункт. Не там ли принимается решение о начале консолидации, о запуске импульсов по нейронным цепям, не по этому ли кругу они и циркулируют? Но ведь должна еще быть циркуляция между этим кругом и отделами, откуда поступают сигналы о новых впечатлениях и символы эталонов. Откуда-то должны приходить и сведения о важности новой информации. Как все это происходит? И какие функции несут отдельные звенья круга? Алкоголь чаще всего разрушает не сам гиппокамп, а маммилярные тела, крошечные сосковидные отростки, примыкающие к гипоталамусу. Но среди больных корсаковским синдромом есть и такие, у кого разрушен только таламус. Нет, неврологи и анатомы о звеньях пока судить не берутся, они говорят только об одном гиппокамповом круге. Физиологи, изучающие условные рефлексы, тоже. Да, кролик, у которого поврежден гиппокамп, обучается с трудом. Но, как справедливо замечает нейрофизиолог Ольга Сергеевна Виноградова, гиппокамп связан с эмоциями не меньше, чем с самой памятью, да, кроме того, он ближайший сосед гипоталамуса, который, как известно, регулирует ощущения сытости и голода. Вот и решайте, отчего кролик с поврежденным гиппокампом. равнодушно взирает на любимую свою морковку: оттого, что он забыл урок, оттого, что у него пропал аппетит, или оттого, что ему вообще стало все на свете безразлично? Виноградова считает, что условные рефлексы дают физиологам не больше десяти процентов достоверной информации, а если вы хотите получить хотя бы двадцать, исследуйте не замутненное противоречивыми мотивами поведение, а нейронную активность. Она предлагает убедительную гипотезу о гиппокампе, родившуюся из опытов над теми же кроликами, которым вживляли электроды в гиппокамп и записывали реакции его нейронов на световые вспышки и всевозможные звуки.
В гиппокампе преобладают нейроны новизны, а посему на все сигналы он реагирует одинаково: идут одни и те же сигналы - реакция мало-помалу угасает, чуть-чуть меняется сигнал - возникает вновь. Это естественно, парадоксально другое: при появлении нового сигнала большинство нейронов замолкает и не дает никаких разрядов. Умолкание и есть их реакция, а обычная «фоновая» активность - ее отсутствие. Как объяснить этот парадокс и не кроется ли в нем ключ к пониманию роли гиппокамиа? Виноградова решает посмотреть, чем занимаются во время молчания гиппокампа его соседи. Оказывается, в это время просыпаются нейроны ретикулярной формации и посылают свои импульсы в кору. Идет ориентировочная реакция, мозг изучает новый сигнал. Сигнал изучен, начинается консолидация следов, и гиппокамп оживает: его нейроны затормаживают работу ретикулярной формации, гасят ее. Выходит, гиппокамп регулирует ее активность, он решает, что стоит запоминать, а чего не стоит. Он - аппарат оценки сигналов, сравнивающее устройство. По схеме Виноградовой, сравнение происходит так. На вытянутые в цепочку нейроны гиппокампа поступают с двух сторон два потока импульсов - один несет информацию о новом сигнале, другой об эталонах. Сигналы встречаются, гиппокамп их сравнивает: если разницы нет, гиппокамп продолжает тормозить ретикулярную формацию своей активностью, если разница есть - умолкает, и ретикулярная формация активизирует запоминающие механизмы. Содержание сигнала его не интересует, только разница. В записях, отражающих его активность, нет и намека на структуру сигнала; такой намек можно увидеть у нейронов-специалистов, преобладающих в сенсорных зонах, и у нейронов маммилярных тел. Не эти ли тела ведают консолидацией, посылая по нейронным кругам такие импульсы, в которых кодируется рисунок следа? Все возможно. К сожалению, ничего больше о гиппокампе разузнать пока не удалось и о маммилярных телах тоже. И откуда приходит к нему информация о важности сигнала, тоже неясно. Завеса таинственности, окутывавшая гиппокамп, только начинает приоткрываться, но главное уже сомнению не подлежит: это важнейший механизм памяти, от которого воспроизведение следов зависит в первую голову. Остается узнать, наконец, что же представляют собой сами следы.
В том же 1943 г., когда Мак-Каллох и Питтс выпустили из кувшина демона моделирования, чья тень все еще будоражит умы, шведский гистохимик Холдер Хиден обнаружил, что во время возбуждения нервной системы в нейронах усиливается синтез нуклеиновых кислот и белков. В самом этом факте не было ничего удивительного, Будь жив Геринг, он сказал бы, что то же самое происходит и в упражняющейся мышце. Но Хиден уже не мог удовлетвориться таким объяснением. На его глазах молекулярная биология двигалась к расшифровке кода наследственности,