Озонные дыры и гибель человечества — страница 104 из 113

2 техногенного происхождения. Незначительная часть углерода (около 600–750 Гт) содержится в верхнем слое толщиной около 75 м, который всегда хорошо перемешан. Этот слой океана называют деятельным океаном. Примерно столько же СО2 находится в атмосфере. Основная же часть углерода Мирового океана, которая примерно в 50 раз превышает количество углерода в атмосфере, содержится в глубинном океане, ниже 75 м. Эта часть океанической воды плохо перемешивается. В глубинном океане часть углерода находится в виде бикарбонатных ионов. Примерно 1 тысяча Гт углерода здесь находится в виде растворенного органического вещества. Углерод, который содержится в неорганических осадочных месторождениях, составляет 3 × 107 Гт. В органических осадочных отложениях Земли содержится 0,66 × 107 Гт углерода. Тот и другой углерод находится в связанном состоянии и не участвует в углеродном цикле. Углерод содержится и в почве. Его там примерно 1–3 тысячи Гт. Основным источником его в почве является торф.

Скорость обмена углекислым газом между атмосферой, биосферой и океаном зависит от климатических условий. Так, из холодной воды деятельного (верхнего) слоя океана углекислый газ улетучивается неохотно. Он более эффективно переходит из атмосферы в эту холодную воду. Поэтому в высоких широтах преобладает поток углекислого газа из атмосферы в воды Мирового океана. В условиях теплой воды приповерхностного слоя Мирового океана, то есть в южных широтах, преобладает поток углекислого газа из океана в атмосферу. Это в том случае, если поверхностный слой воды чистый. Если же он сверху покрыт пленкой нефти, то это существенно затруднит выход углекислого газа из воды.

Обмен всем углекислым газом между глубинным океаном и верхним деятельным слоем происходит в течение примерно трехсот лет. Зато полный обмен между верхним деятельным слоем и глубинным слоем происходит очень быстро, всего за 4–6 лет. Между атмосферой и биосферой время полного обмена СО2 составляет 33 года, а обратный полный обмен между биосферой и атмосферой происходит дольше — за 40 лет. Полный обмен СО2 между атмосферой и деятельным верхним слоем океана происходит за 5–6 лет.

Все эти данные надо знать для того, чтобы реалистично оценить последствия увеличения СО2 в атмосфере, которое вызвано деятельностью человека. Было проведено много таких оценок. Ученые задавали различные условия, и прежде всего темпы роста СО2 в атмосфере. Что же получилось? Оказалось, что наиболее опасны увеличения содержания СО2 в атмосфере в 2–3 раза. Если же это содержание увеличивается еще больше, то последствия этого не ухудшаются. С физической точки зрения это понятно — происходит что-то вроде насыщения. При двух- трехкратном увеличении содержания СО2 в атмосфере возможности парникового эффекта СО2 исчерпываются и дальнейшее увеличение концентрации в смысле нагрева атмосферы перестает быть эффективным. Собственно, опасаются именно чрезмерного нагрева атмосферы за счет роста концентрации СО2. В других отношениях увеличение количества СО2 как для человека, так и для всей биосферы не представляет никакой опасности. Это даже в том случае, если концентрация СО2 увеличится многократно. Более того, с точки зрения ускорения роста растений такое увеличение СО2 даже выгодно, поскольку рост интенсифицируется. Так, за счет увеличения содержания СО2 в атмосфере рост деревьев в будущем ускорится. Как же будет меняться температура атмосферы при увеличении содержания СО2 в атмосферном газе? Практически у всех специалистов по расчетам получилось, что с ростом концентрации СО2 должна увеличиваться температура в нижней тропосфере. Зато выше, в верхней тропосфере и стратосфере, атмосферный газ будет охлаждаться. Если газ нагрет неравномерно, то он начнет двигаться от горячих мест к холодным. Так и в этом случае, атмосферный газ будет более интенсивно двигаться в вертикальном направлении. Когда с высотой происходит большой перепад температуры, то атмосферный газ становится неустойчивым. В нем развиваются конвективные движения, активизируется образование облаков и осадков. К чему это приведет? К увеличению отражательной способности атмосферы. Поэтому большая часть солнечной энергии будет отражаться обратно в космос. Значит, это будет работать на уменьшение нагрева нижней тропосферы. Это называется отрицательной обратной связью. Отрицательной — потому, что рост концентрации СО2 и как следствие температуры в нижней тропосфере приводит в конце концов к уменьшению этой температуры (через рост неустойчивости атмосферного газа, облачности и осадков). Расчеты показывают, что наибольший эффект от роста концентрации СО2 будет проявляться в высоких широтах. Здесь температура может увеличиться на 8 — 10 °C, тогда как в низких и средних широтах это увеличение составит 1–2 °C. При двукратном увеличении концентрации СО2 температура воздуха у поверхности для всего полушария может увеличиться на 2–2,5 °C. Но это повышение температуры определяется не только прямым увеличением концентрации СО2. Здесь большую роль играет увеличение испарения, в результате в атмосфере увеличивается количество водяного пара. А водяной пар, как и СО2, обладает свойством создавать парниковый эффект.

Так или иначе увеличение концентрации СО2 приведет к изменению температуры. Но не только. Изменится и режим осадков и испарения. Произойдет потепление климата. Как уже говорилось, повышение температуры будет самым сильным в высоких широтах обоих полушарий. В результате снеговая линия будет отступать, ледники будут таять. Возникнет нестабильность ледяного покрова. Далее кардинально нарушится нормальная циркуляция атмосферы и океана. В одних районах будут часто проноситься смерчи, а другие будут охвачены засухами. Существенно то, что при потеплении климата потеплеет и океан. Значит, увеличится поток СО2 из океана в атмосферу. А это усилит парниковый эффект. Если растают континентальные льды, неизбежно повысится уровень Мирового океана. Последствия этого очевидны — будут затоплены сотни портов, низменных плодородных земель и т. п.

Проблема СО2 не единственная. Фреоны также способны создавать парниковый эффект. Как уже говорилось, фреоны поступают в атмосферу в процессе их применения в различных промышленных и бытовых установках (рефрижераторы, холодильники, системы кондиционирования воздуха и т. п.). Они выбрасывают в атмосферу и при использовании различных товаров широкого потребления. Это различные аэрозольные парфюмерные и косметические товары, инсектицидные препараты, лаки, краски и т. п. Примерно 85–87 % всех произведенных фреонов попадает в атмосферу. Поскольку фреоны в атмосфере живут десятки лет, они там накапливаются. Это и создает опасность. Если бы они быстро выводились из атмосферы, то эффект от них был бы значительно меньше.

Фреоны, выброшенные в атмосферу, опасны прежде всего тем, что в химических реакциях разрушают молекулы озона, а значит и озонный слой. Последствия этого разрушения очевидны, поскольку озонный слой защищает биосферу и всех нас в том числе от губительного действия ультрафиолетового излучения Солнца. Кроме того, озон обладает способностью создавать парниковый эффект. Такой же способностью обладают N2O, CH4, CCl2 F2, NH3, водяной пар и др.

Способность поглощать инфракрасное излучение у фреонов в несколько раз больше, чем у углекислого газа. Если бы их концентрация была такой же, как концентрация СО2, то последствия от создаваемого ими парникового эффекта были бы катастрофическими. В настоящее время концентрация фреонов недостаточна для создания такого катастрофического парникового эффекта. Но она весьма ощутима в смысле разрушения озонного слоя.

В принципе надо рассматривать действие малых составляющих атмосферы не по отдельности, а совокупно, всех вместе и одновременно. Ведь некоторые из них не повышают температуру атмосферы, а, наоборот, компенсируют влияние других малых составляющих. Прежде всего надо рассматривать азотный цикл в атмосфере, который функционирует в результате сжигания топлива, ядерных взрывов, а также внесения азотных удобрений и др. В этих процессах образуются азотные соединения, которые играют очень важную роль в фотохимии озона, а также в поглощении коротковолнового солнечного излучения. Необходимо анализировать и сернистый цикл. Речь идет главным образом о двуокиси серы, которую человек выбрасывает в атмосферу в результате различных технологических процессов. При этом сера окисляется в H2SO4 и в конце концов переходит в аэрозоль. Влияет на климат стратосферный мелкодисперсный аэрозоль, который состоит из соединений серы. Серная кислота, которая образуется при соединении двуокиси серы с водой, попадает в облака. С осадками она переносится в почву и окисляет ее. Попадает она и в водоемы со всеми вытекающими отсюда последствиями.

Оценено, что к 2025 году в атмосферу за счет сжигания угля и нефти будет выброшено 1362 миллионов тонн окислов серы. Окислы серы в основном выделяются при сжигании угля. В каменном угле содержится до 3 % серы, тогда как в нефти ее меньше — до 2 %. Состав как угля, так и нефти зависит от того, где они добываются. Имеются источники угля, в некоторых всего 0,71 % серы. В некоторых местах добывают нефть, в которой содержится всего 0,14 % серы.

В настоящее время над городами и городскими районами содержится в среднем не менее 100 мг аэрозоля в каждом кубическом метре воздуха. За пределами городских зон аэрозоля примерно в пять раз меньше. Аэрозоль оказывает влияние на биосферу и здоровье людей. Мы здесь рассмотрим только его влияние на климат.

В нижней части атмосферы — тропосфере сосредотачивается в основном аэрозоль, состоящий из крупных частиц. Его называют крупнодисперсной фракцией аэрозоля. Дело в том, что более мелким, а значит, и более мелким частицам легче подняться вверх, в верхние слои атмосферы. А крупные частицы аэрозоля в тропосфере вымываются осадками. Поэтому эти частицы находятся в атмосфере относительно недолго — от нескольких дней до недель. Редко они задерживаются здесь в течение месяца. Выше тропосферы в стратосферу добираются мелкие частицы аэрозоля (мелкодисперсный а