Озонные дыры и гибель человечества — страница 109 из 113

2), хотя на город была сброшена более мощная атомная бомба. Здесь положительно сыграл рельеф местности, которая была очень сильно пересеченной, а значительные части города были затенены от прямой радиации светового импульса ядерного взрыва. Все приведенные выше примеры говорят о том, что надо учитывать многие факторы. Это и характер местности, и характер застройки, и погода и т. д.

Как распределяется энергия во время ядерного взрыва? Ученые оценили, что при ядерных взрывах на высоте ниже 10 км примерно 30–40 % энергии взрыва уходит в виде импульса. Этот импульс длится около одной или нескольких секунд, если взрывается ядерная бомба мощностью в несколько мегатонн. Этот импульс представляет собой излучение в видимом диапазоне спектра и вблизи этого спектрального участка. Это световая вспышка ядерного взрыва. Около половины энергии ядерного взрыва (45–55 %) расходуется на образование ядерной волны. Оставшиеся около 15 % энергии взрыва расходуются на образование проникающей радиации и наведенной радиоактивности. Энергия светового импульса огромна. Его интенсивность измеряется в килоджоулях на квадратный метр. Это поток светового излучения, просуммированный за время, равное длительности светового импульса.

Возгорание зависит не только от поступившей энергии. Оно зависит и от свойств облучаемого материала, его влажности и т. п. Порог возгорания изменяется от 210 до 630–840 кДж/м2. В калориях он равен от 5 до 15–20 кал/см2. Было установлено, что в Хиросиме порог возгорания составлял 294 кДж/м2, а в Нагасаки все 840 кДж/м2. Сама же плотность энергии излучения, которая вызывает пожары, зависит от мощности взрыва и от метеорологической дальности видимости в пограничном слое. Дальность видимости определяется главным образом влажностью атмосферы и наличием аэрозоля. Установлено, что световое облучение приблизительно пропорционально мощности ядерного взрыва.

Первичные загорания происходят от светового импульса. За ним следует ударная волна. Она может подавлять огонь. Это происходит в тех случаях, если волна сдувает огонь или покрывает горючий материал негорящими фрагментами зданий. Но чаще ударная волна способствует распространению пожаров и появлению их новых очагов, поскольку волна разрушает и разбрасывает твердые горючие материалы, разрушает нефте- и газопроводы и т. д. По мере подъема огненного шара происходит захват новых масс воздуха. А это способствует распространению огня. Специалисты провели расчеты и показали, что хотя скорость выделения энергии при пожаре Хиросимы была значительно меньше, чем при пожаре Гамбурга в 1943 году, тем не менее и в этом случае развился огненный шторм и все, что могло гореть, сгорело в радиусе 2 км вокруг эпицентра взрыва бомбы. Ясно, что пожары после ядерного взрыва будут более разрушительными, чем все известные в истории пожары больших городов.

Обязательно надо учитывать и пожары в лесах и степях. От взрыва ядерной бомбы с энергией 1 Мт пожары охватят сразу примерно 700 квадратных километров. Лесные пожары, которые вызваны взрывом ядерных бомб, более интенсивные, чем обычные лесные пожары, которые начинаются от непотушенного окурка. Дело в том, что одновременно со световой вспышкой (точнее, сразу после световой вспышки, которая поджигает горящий материал) работает ударная волна, вызванная взрывом. Она валит деревья леса и подбрасывает их в огонь. Может, что-то подобное происходило 30 июня 1908 года во время падения Тунгусского метеорита. Он вошел в атмосферу и взорвался на высоте около 8-10 км. При этом огненный шар не образовался. Во всяком случае, интенсивность свечения при этом была в сотни и даже тысячи раз меньше, чем при взрыве ядерной бомбы. Но ударная волна при падении Тунгусского метеорита образовалась очень мощная. Она была такой, как при взрыве 10 Мт ТНТ на высоте около 8 км. В результате было повалено около двух тысяч квадратных километров леса. Даже кора и сучья со многих деревьев были содраны. Возникли многочисленные пожары. Специалисты установили, что в этом случае полнота сгорания была гораздо большей, чем при обычных лесных пожарах в тайге. Естественно, что степень распространения пожаров и площадь возгорания зависят от погоды и сезона. Наиболее благоприятная для них сухая погода летом.

Количество дыма, которое поступает в атмосферу от пожаров, зависит от массы топлива, его природы, а также условий горения. Поэтому специалисты склоняются к мысли, что основным донором дыма в период ядерной войны будут городские пожары. В городах скоплено слишком много горючих материалов. Их плотность очень велика. Так, в центре современного европейского города на каждом квадратном метре имеется около 200 килограмм такого горючего материала. В пригородах плотность горючих материалов примерно в десять раз меньше. Если город не слишком большой, с населением около одного миллиона человек, то, по оценкам ученых, в нем хранится полный запас топлива на 10–40 лет. Таких городов в мире сейчас не менее 200. Отсюда следует и источник дыма при ядерной войне. В городах имеются на языке военных «городские цели». Их около тысячи. Поэтому «потенциальное топливо» составляет приблизительно 10 000 Мт. Дальше надо учесть запасы нефти, газа, и т. д. Специалисты оценили, что городское топливо в городах всего мира достигает 7500 Мт. Из них 5000 Мт приходится на древесные материалы, 1500 Мт — на нефть и нефтепродукты, и 1000 Мт — на различные пластмассы, полимеры, промышленную органику и т. п.

Пожар может гореть по-разному, и при этом выделяется разное количество дыма. Это зависит от условий горения. Количество дыма сильно увеличивается, если кислорода поступает меньше. Увеличивает количество дыма и рост температуры вентилирующего воздуха. Если горючий материал не горит, а тлеет, то масса выделяемого при этом дыме увеличивается во много раз. При горении леса на площади около десяти квадратных метров относительная масса дыма составляет 3–6 %. Но она увеличивается до 15 % при тлении. При горении нефтепродуктов, пластмасс и резины дыма выделяется до 15 % при пламенном горении и до 40 % при тлении. Но не будем брать в расчет эти максимальные величины. Примем, что при горении выделяется примерно 4 % дыма (по массе). Далее, примем, что сгорает половина запасов «потенциального топлива». Если сгорит половина всего «потенциального топлива», то масса дыма достигнет 200 Мт. Из всего того, что уже было сказано об аэрозольных слоях и их влиянии на изменение климата, ясно, что аэрозольный слой массой 20 миллионов тонн вызовет, без сомнения, катастрофические для биосферы (и человека) изменения климата.

Основным источником дыма в случае ядерной войны будут города. Они дадут как минимум 150 миллионов тонн дыма. Это при очень щадящих условиях, когда считается, что предел плотности энергии, которая вызывает воспламенение, близка к максимальному значению (а именно 840 кДж/м2), что примерно треть областей поражения перекрывается при множественных взрывах. Считается также, что пожары не распространяются. На самом деле эти ограничения нарушаются, поэтому заведомо можно считать, что масса городского дыма во время ядерной войны достигнет не менее 450 миллионов тонн.

Вернемся к более детальному рассмотрению лесных пожаров, вызванных ядерными взрывами. Запасы сухой древесины в среднем составляют около 15 кг на один квадратный метр. Конечно, эту цифру можно спокойно удвоить, когда речь идет о высокопродуктивных лесах. В таких лесах до 20 % сухой древесины (6 кг/м2) может находиться в виде горючей подстилки и опадка. Это сухие сучья, листья и т. п. Весь этот материал обычно сгорает полностью. Что касается древостоя, то из всей массы сгорает примерно пятая часть (сучья, которые тоньше 4 см, кора, часть ствола). Можно считать, что в среднем сгорает примерно треть сухой биомассы. Если запасы сухой древесины составляют 15 кг на квадратный метр, то в среднем сгорает примерно 5 кг сгораемого материала на квадратный метр леса.

Мы еще ничего не говорили о торфяниках, которые в случае ядерной войны тоже будут гореть. Дым от этих пожаров также надо учитывать. В этом случае запасы горючего материала составляют до 15 кг/м2. Торфяники горят в режиме тления, и такие пожары длятся месяцами и выделяют много дыма.

Если горит дерево, то примерно 4 % его массы переходит в дым. Если рассматривать задачу в глобальном масштабе, то есть условия мирового ядерного конфликта, то может сгореть примерно один миллион квадратных километров леса. В результате такого глобального пожара выделится до 160 Мт дыма. Эту цифру без труда можно дотянуть до 200 Мт, если считать, что на каждом квадратном метре сгорает 5 кг древесины и при этом 4 % всей массы горючего переходит в дым. Конечно, все цифры здесь ориентировочные. Можно считать, что сгорит меньшая площадь леса, но выход дыма при этом будет несколько больше. Ведь важно убедиться в том, насколько опасна игра в ядерные игрушки.

Как уже говорилось, чем выше поднимется дым, тем больше бед он наделает. В обычных условиях при лесных пожарах он поднимается до высоты 2–3 км. Реже он поднимается выше. Дым от пожара первоначально поднимается в так называемых термиках. Так называют воздух, который нагрет пожарами. Этот нагретый воздух вместе с дымом поднимается до высоты, на которой плотность воздуха внутри этой струи сравнивается с плотностью воздуха вокруг нее. Поэтому нагретый воздух больше не выталкивается вверх. Он останавливается на этой высоте. Чем выше, тем нагретый воздух занимает все больший и больший объем. То есть он расширяется. Это происходит потому, что чем выше, тем меньше давление на этот воздух воздуха из граничащих ненагретых областей, поскольку с ростом высоты плотность воздуха уменьшается. Но при расширении теплый воздух охлаждается. Ясно, что в термики (области нагретого воздуха) может вовлекаться и окружающий воздух.

Специалисты рассчитали вероятность того, что восходящие конвективные потоки воздуха с дымом, порожденные пожарами, могут достигнуть высоты стратосферы (20–40 км). При источнике мощностью в один миллион киловатт струя нагретого воздуха в сухой атмосфере распространится до высоты около 2 км. Это небольшая мощность. Она соответствует сгоранию 70 тонн керосина в течение одного часа. Рассчитана даже формула, связывающая высоту распространения горячей струи и тепловую мощность источника нагрева: высота распространения струи пропорциональна корню в четвер