в течение примерно 5 миллиардов лет. Поэтому часть водорода в самом центре Солнца успела «выгореть», превратиться в гелий, который в данном случае можно назвать «золой». Благодаря этому в центре Солнца имеется зона, где водорода меньше. Но чем дальше от центра, тем его становится больше. На удалении от центра на одну четверть солнечного радиуса водород составляет 96 % всего солнечного вещества (по массе). Собственно, на этом расстоянии заканчивается центральная часть Солнца, называемая ядром. На внешней части солнечного ядра температура уже составляет только 8 миллионов градусов, плотность вещества примерно в 20 раз меньше, чем в центре. В солнечном ядре, где генерируется 99 % солнечной энергии, заключена половина всей массы Солнца (хотя по объему ядро занимает только 1/64 всего объема Солнца).
Ядро окружено солнечным веществом, в котором термоядерные реакции не идут. Эта сферическая область Солнца была названа промежуточной. Она простирается от внешней границы солнечного ядра до 0,86 радиуса Солнца. Вещество в промежуточной области представляет собой однородную смесь, состоящую из водорода, гелия и тяжелых элементов. На каждые 10 атомов водорода приходится примерно 1 атом гелия. Атомы тяжелых элементов (C, N, O, Ne, Mg, Si, Ar, Ca, Fe, Ni) составляют примерно 1 % по массе. Они содержатся в таких же относительных количествах, что и в земной коре. Это естественно, поскольку и Земля, и Солнце образованы из одного первоначального «теста». Этим тестом был межзвездный газ, в который тяжелые элементы попали после взрывов сверхновых звезд первого поколения.
Энергия, освобождаемая в солнечном ядре, пробирается наружу через промежуточную область путем излучения. В природе известны различные способы передачи энергии через вещество, эффективность которых зависит от физических условий (плотность, температура, давление). В промежуточной области передача энергии осуществляется с помощью излучения.
Электромагнитное излучение, каким является видимый свет, рентгеновские, инфракрасные, ультрафиолетовые и гамма-лучи, а также радиоволны, быстрее всего распространяется в вакууме. Здесь скорость его распространения достигает 300 000 км/с. Но если на пути излучения имеется какое-либо вещество, то происходит задержка излучения. Оно при этом может или поглощаться (полностью или частично), или же отражаться в определенном направлении. При определенных условиях излучение может взаимодействовать с атомами или молекулами, вызывая их изменение.
В промежуточной области Солнца плотность вещества еще очень высока, а энергия электромагнитного излучения, пробивающегося от солнечного ядра наружу, велика. Поэтому энергичные фотоны (гамма-кванты) поглощаются атомами, встречающимися в изобилии на их пути. Атом, поглотивший фотон, через определенное время переизлучает, но переизлученный фотон имеет меньшую энергию, чем поглощенный атомом фотон. Так, если первоначальное излучение представляло собой гамма-лучи, то с уменьшением частоты оно становится рентгеновским излучением, затем ультрафиолетовым. При дальнейшем уменьшении частоты оно становится видимым, а затем инфракрасным.
Перенос энергии в виде излучения является основным только в пределах переходной области. На расстоянии от центра Солнца, равном 0,86 его радиуса, физические условия (температура, плотность) уменьшаются настолько сильно, что механизм лучистого переноса энергии становится неэффективным. Температура здесь составляет «всего» полмиллиона градусов, а плотность в 2000 раз меньше, чем у основания переходной области. Здесь начинается область Солнца, обладающая принципиально отличными физическими свойствами. Главное среди этих свойств — турбулентность. Турбулентное движение вещества, например, воздуха в атмосфере Земли, характеризуется вихревыми движениями. В третьей области Солнца возникают турбулентные движения вещества, или турбулентные конвекции. Поэтому эту область назвали конвективной зоной. Нижняя часть конвективной зоны имеет температуру, равную 0,5 миллиона градусов. Температура в верхней ее части составляет всего примерно 6,6 тысячи градусов. Такой резкий перепад температур по высоте и обусловливает возникновение турбулентного движения вещества.
В конвективной зоне в результате значительного уменьшения температуры (по сравнению с переходной областью) количество атомов увеличивается. Поэтому солнечное вещество сильнее, чем в переходной области, поглощает солнечное излучение. В конвективной зоне энергия распространяется к наружной части Солнца не путем переизлучений, а непосредственно самим веществом при его турбулентной конвекции.
Все описанные три области Солнца — ядро, переходная область и конвективная зона — находятся под поверхностью Солнца, являются недоступными какому-либо экспериментальному исследованию. Выше конвективной зоны располагается область солнечного шара, которая становится видимой, так как из нее исходит видимый свет.
Излучение вырывается наружу на верхней границе конвективной зоны потому, что здесь плотность вещества становится малой. Поэтому путь фотонам оказывается открытым, они больше не поглощаются и не рассеиваются. Точнее, это происходит с очень малой вероятностью. Так, свет, который мы видим, глядя на Солнце, исходит из очень тонкого слоя, который покрывает снаружи конвективную зону. Он, как и все рассмотренные ранее области Солнца, имеет сферическую форму. Называется он просто — сферой света или, точнее, фотосферой. Толщина фотосферы составляет примерно 100 км.
На этом Солнце не кончается. Выше фотосферы находятся другие области, в которых также содержится солнечное вещество (рис. 42). Но традиционно сложилось так, что Солнцем мы называем то, что видим, то есть видимый солнечный шар. Поэтому видимую фотосферу Солнца часто называют поверхностью Солнца. Все, что находится выше видимого слоя Солнца, называют солнечной атмосферой. Когда мы говорим о Земле, то границей между атмосферой и собственно Землей является поверхность Земли. Здесь деление основано на том, что сама Земля является твердым телом, местами покрытым жидкостью — водой, а атмосфера — газ. В случае Солнца это не так, поскольку как само Солнце, так и его атмосфера состоят из газа. Деление на различные области, в том числе на само Солнце и его атмосферу, проводится по физическим условиям в разных областях, по различию тех процессов, которые там протекают.
Радиус Солнца (на уровне фотосферы) составляет 0,696 х 106 км. Он в 109 раз больше радиуса Земли. Если наблюдать Солнце с Земли, то солнечный диск будет виден под углом 31′59″, то есть примерно полградуса. Ускорение силы тяжести на поверхности Солнца в 28 раз больше, чем на поверхности Земли, а давление здесь составляет только 1 % от давления на поверхности Земли. Температура в фотосфере с увеличением высоты резко падает. В верхней части фотосферы она уменьшается до 4300о. В излучающей части фотосферы она равнялась примерно 5780о. Здесь речь идет об эффективной температуре излучающего слоя, который определяется согласно закону Стефана-Больцмана.
Практически вся энергия, которую излучает Солнце в межпланетное пространство, исходит из фотосферы, причем большая часть излучения является видимой. Что это — удачное совпадение, случай, дающий нам возможность невооруженным глазом наблюдать не только Солнце, но и все, что освещено его лучами? Конечно нет! Это закономерно. Наши глаза развились так, чтобы быть чувствительными именно к тому участку спектра солнечного излучения, которого больше поступает в нашу среду обитания — на поверхность Земли. Ведь примерно половина солнечной энергии, которая достигает поверхности Земли, приходится на видимый участок спектра.
СОЛНЕЧНЫЙ ВЕТЕР
Солнце выбрасывает в межпланетное пространство не только облака заряженных высокоэнергичных частиц, скорости которых могут достигать 1000 км/с, но также и заряженные частицы, которые движутся с меньшими скоростями (200–400 км/с). Собственно, они представляют собой как бы продолжение солнечной короны. Поэтому поток заряженных частиц, движущихся от Солнца, был назван солнечным ветром.
Еще до того, как поток солнечного ветра был измерен приборами, установленными на космических аппаратах, о его существовании ученые догадались по результатам его действия. Так, в 1896 году норвежский физик О. К. Бирке-ланд высказал мысль, что именно потоки заряженных частиц, выбрасываемые из Солнца, действуют на магнитное поле Земли и вызывают возмущение в околоземном пространстве.
В конце 50-х годов нашего века гипотеза о существовании солнечного ветра была высказана американским физиком-теоретиком Е. Паркером. Его доводы основывались на результатах наблюдений движения хвостов комет: под действием давления солнечного ветра хвосты комет всегда располагаются относительно ядра кометы в направлении, противоположном Солнцу. В начале 60-х годов были выполнены прямые измерения заряженных частиц в межпланетном пространстве. Измерения подтвердили существование солнечного ветра.
Солнечный ветер состоит главным образом из электронов и ядер водорода — протонов. Примерно 5 % в нем составляют ионы гелия. Но когда скорость ветра и концентрация его частиц максимальны, количество гелия может составлять до 25 %.
Все характеристики солнечного ветра, то есть корпускулярного излучения Солнца, могут изменяться в 10 — 100 раз, в зависимости от процессов, происходящих в солнечной атмосфере, фотосфере и конвективной зоне.
Так же как солнечная плазма в различных образованиях (солнечных пятнах, факелах, факельных площадках, волокнах и протуберанцах, корональных конденсациях), солнечный ветер находится в магнитном поле, пронизывающем межпланетное пространство и представляющем собой продолжение магнитного поля Солнца.
Кроме локальных магнитных полей активных областей Солнца у него, как и у Земли, имеется общее магнитное поле. Это поле в сотни и тысячи раз меньше локальных полей солнечных пятен и составляет всего около 1 гаусса (Гс), что лишь в 2 раза больше магнитного поля Земли. Тем не менее общим магнитным полем Солнца нельзя пренебрегать: оно играет важную роль в процессах, посредством которых солнечное корпускулярное излучение действует на Землю и околоземное пространство.