Коротковолновое излучение Солнца поглощается поверхностным слоем Земли, нагревая его. Участки суши прогреваются на меньшую глубину, чем вода. Они же и теряют тепловую энергию быстрее. Часть этой энергии уходит в атмосферу в виде длинноволнового излучения. Максимальная плотность потока длинноволнового излучения Земли приходится на длины волн вблизи 10 000 нм (10 мкм). Земное излучение с длинами волн 5–7 мкм и более 12 мкм поглощается водяным паром, который находится в нижнем слое атмосферы. Углекислый газ поглощает земное излучение с длинами волн 4–5 мкм и более 14 мкм. Излучение с длинами волн 8 — 11 мкм мало поглощается атмосферой. Только вблизи длины волны 9,6 мкм излучение поглощает стратосферный озон.
Солнечное излучение в атмосфере не только поглощается, но и рассеивается: на атомах, молекулах и более крупных частицах. Рассеивается излучение равновероятно во все стороны. Поэтому в нижнюю полусферу попадает только половина рассеянного изучения. А до поверхности Земли доходит только часть этой половины. Далее, не вся энергия дошедшего до Земли коротковолнового излучения будет истрачена на нагрев почвы. Часть ее отразится обратно вверх. Так, поверхность, покрытая льдом, может отразить 75 % и более падающего на нее солнечного излучения. Песок отражает приблизительно 1/3, травяной покров — 0,1, а вода — всего 2 % падающего на нее солнечного излучения.
Нижние слои атмосферы в пределах тропосферы нагреваются при контакте с земной поверхностью и при последующем переносе теплого воздуха вверх в результате турбулентного движения. Этот нагрев зависит как от падающей на земную поверхность лучистой энергии, так и от характера земной поверхности.
В том месте, где воздух нагрет до более высокой температуры, его плотность меньше. Поэтому и давление воздуха в разных местах земного шара в данный момент времени будет различным. Ясно, что оно зависит от освещенности земной поверхности солнечным излучением и от характера подстилающей поверхности. С течением времени распределение давления меняется, так как меняются условия освещенности. Это приводит воздух в движение. Он устремляется от мест, где давление повышено, к тем областям, где оно понижено. Такие горизонтальные движения воздуха есть не что иное, как ветер. Чем больше перепад давления, тем сильнее ветер. Эти горизонтальные движения воздуха связаны с вертикальными (конвективными) движениями следующим образом. В области пониженного давления воздух сходится к центру области. Далее, нагреваясь, воздух поднимается вверх. Там, где давление повышено, воздух опускается вниз и растекается во все стороны от этой области.
С движениями воздуха очень тесно связан и озон. Он или вовлекается в эти движения, или оказывается изолирован от них. Поэтому движения воздуха в погодном слое и выше должны быть проанализированы.
Было показано, что наибольшие горизонтальные скорости движения воздуха (то есть ветры) имеют место в областях, где давление понижено, потому что перепад давления в горизонтальном направлении в этом случае больше, чем в областях повышенного давления.
Тепловая энергия, переданная воздуху, благодаря ветру переносится из одного места земного шара в другое. Такой перенос наряду с переносом энергии в результате циркуляции опасен, приводит к перераспределению энергии, получаемой Землей от Солнца. Так, холодные Антарктида и Арктика и горячие экваториальные области соединяются этой циркуляцией воздуха и воды. Благодаря этому избыточное тепло из области экватора переносится в полярные районы, где имеется значительный дефицит лучистой энергии. Дефицит вызван тем, что в этих районах теряется больше энергии, чем приходит от Солнца. Благодаря этому перераспределению энергии средние за ряд лет приход и расход энергии в масштабе всей Земли равны друг другу, то есть энергетический баланс сохраняется.
ОТКУДА БЕРЕТСЯИ КАК РАЗРУШАЕТСЯ ОЗОН
Когда солнечное излучение проходит через атмосферу Земли, оно взаимодействует с атомами и молекулами различных химических элементов атмосферного газа. Что при этом происходит? Если кванты излучения имеют достаточную энергию, то они отрывают от атомов и молекул по одному орбитальному электрону. При этом атом расщепляется на два осколка. Одним из них является электрон, а другим — атом без одного орбитального электрона. Такой атом называют ионом, а процесс — ионизацией. Электрический заряд такого иона является положительным, поскольку один единичный положительный заряд ядра остается некомпенсированным, оторванным орбитальным электроном. Если от атома оторван один электрон, то атом ионизован однократно. Если два — то атом дважды ионизован. В земной атмосфере ионы образованы в результате однократной ионизации. Солнечное излучение успешно производит ионизацию атомов и молекул вещества. Поэтому выше 50 км образуются ионы и свободные электроны (в равных количествах). Чем выше, тем и концентрация больше. Если на высоте 100 км днем их примерно 10 тысяч в 1 см3, то на высотах 300–350 км это число увеличивается в сотни раз и составляет миллионы частиц в том же объеме. На этих высотах достигается максимум концентрации ионов и свободных электронов. Вся ионизованная часть атмосферы Земли называется ионосферой. Ее с таким же успехом можно было назвать электроносферой.
Но солнечное излучение не только отрывает электроны от атомов и молекул. Оно также разрывает молекулы на отдельные части. Этот процесс называют диссоциацией. Одни соединения диссоциируют относительно легко, а другие — с трудом. Поэтому в атмосфере на одних и тех же высотах одни молекулы диссоциированы, а другие остаются нетронутыми. Достаточно легко под действием солнечного ультрафиолетового излучения диссоциирует молекулярный кислород. В результате образуется атомный кислород. Для диссоциации молекулярного кислорода требуется энергия излучения, равна 5,115 эВ (электрон-вольт). Такой энергией обладают фотоны (кванты) с длиной волны, равной 242,3 нм. Диссоциацию могут вызывать не только фотоны, но и заряженные частицы. Диссоциация, вызываемая светом (фото), называется фотодиссоциацией.
Далее атомы кислорода взаимодействуют друг с другом. В результате этого взаимодействия образуются молекулы кислорода. Этот процесс конкурирует с процессом диссоциации. Какой из этих двух процессов будет более эффективен в смысле образования молекул (озона или кислорода), будет зависеть от конкретных условий. Поскольку условия существенно меняются с высотой, то и соотношения между этими реакциями будут меняться с высотой.
Обе эти реакции особые. Они могут протекать только в присутствии активных свидетелей. Дело в том, что если на разрыв молекул надо затратить определенную энергию, то при обратном процессе объединения частиц в молекулу это количество энергии должно высвободиться и куда-то деться. Если нет агента (свидетеля), который бы забрал эту энергию, то реакции состояться не могут. Другими словами, эти реакции могут проходить в присутствии третьего тела. Вероятность присутствия третьих тел зависит от их концентрации, а значит, и от высоты. От высоты зависит и соотношение между концентрациями атомов и молекул кислорода: чем выше, тем атомов кислорода больше, а молекул меньше.
Выше 60 км большая часть молекулярного кислорода диссоциирована. Поэтому здесь преобладает реакция объединения (рекомбинации) атомов кислорода. Ниже этого уровня, где преобладают молекулы кислорода, преобладает реакция соединения молекул и атомов кислорода с образованием озона. Эта реакция (с участием третьего тела) является главным источником образования озона в стратосфере.
Озон не может только возникать. Он должен и исчезать, иначе через какое-то время весь кислород превратился бы в озон. А мы знаем, что это не так.
Исчезает озон в следующих реакциях. Молекула озона соединяется с атомом кислорода, и образуются две молекулы кислорода. Кроме того, озон разрушается (диссоциирует) также солнечным излучением. При этом образуется молекулярный и атомный кислород. Для фотодиссоциации молекул озона фотоны должны обладать достаточной для этого энергией. Длина волны фотонов должна быть не больше 1134 нм. Это значит, что диссоциацию озона способно производить солнечное излучение в ультрафиолетовой и ближней инфракрасной областях.
Озон образуется эффективно из молекулярного и атомного кислорода на высотах 30–70 км. Выше, как уже было сказано, мало молекул кислорода. Ниже этой области не проникает ультрафиолетовое излучение Солнца, оно поглощается выше 300 км. Зато реакция с разрушением озона протекает на всех высотах, вплоть до поверхности Земли.
В описанных выше реакциях образования и исчезновения озона в стратосфере участвуют химические соединения и фотоны. Поэтому они названы фотохимическими реакциями. Сама теория этих реакций называется фотохимической теорией. И если в этих реакциях образуется столько же озона, сколько его за это же время исчезает в фотохимических реакциях, то говорят, что имеет место фотохимическое равновесие. Очень важно, что в фотохимической теории в чистом виде не учитывают движения озона и всего газа. Считается, что фотохимическое равновесие наступает при отсутствии движений (турбулентности, диффузии). Но движения, несомненно, очень важны, поскольку любое химическое соединение (в том числе и озон) может родиться в одном месте, а быть обнаруженным совсем в другом. Исчезает же он в третьем месте.
Фотохимическая теория озона была развита еще в 1930 году выдающимся английским геофизиком С. Чепменом, специалистом по солнечно-земной физике и околоземному пространству. Он плодотворно работал в этой области науки много десятков лет, не имея себе равных по результативности. Его называют геофизиком номер один. Именно на его примере успешно и очень наглядно было показано, что каждый максимум солнечной активности вызывает прилив творческих сил у исследователей. Поэтому число научных работ С. Чепмена неизменно следовало за числами Вольфа, которые характеризуют солнечную активность. Но вернемся к озону. Из схемы Чепмена следуют такие же свойства распределения озона и атомного кислорода в стратосфере и выше (в мезосфере и нижней части термосферы). Расчеты, выполненные на основании чепменовского цикла реакций, позволили получить следующие свойства этих распределений. Максимум содержания озона получается на высоте между 25 и 40 км. Концентрация атомного кислорода увеличивается с высотой и достигает максимума на высотах между 90 и 100 км. Согласно этой схеме, выше 60 км озон должен сильно измениться в течени