Палеонтология антрополога. Том 3. Кайнозой — страница 29 из 38

Abdounodus hamdii.

Gingerich Ph.D. Tytthaena parrisi, oldest known Oxyaenid (Mammalia, Creodonta) from the Late Paleocene of Western North America // Journal of Paleontology, 1980, V.54, № 3, pp.570–576.

Halliday Th.J.D., Upchurch P. et Goswami A. Resolving the relationships of Paleocene placental mammals // Biological Reviews, 2015, pp.1–30.

Head J. J., Bloch J. I., Hastings A. K., Bourque J. R., Cadena E. A., Herrera F. A., Polly P. D. et Jaramillo C. A. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures // Nature, 2009, V.457, № 7230, pp.715–717. Гигантский удав Titanoboa cerrejonensis.

Ladeveze S., Muizon de Ch., Beck R. M.D., Germain D. et Cespedes-Paz R. Earliest evidence of mammalian social behaviour in the basal Tertiary of Bolivia // Nature, 2011, V.474, pp.83–86. Социальный опоссум Pucadelphys andinus.

Li C. – K. Paleocene eurymyloids (Anagalida, Mammalia) of Qianshan, Anhui // Vertebrata PalAsiatica, 1977, V.15, pp.103–118.

Longrich N. R., Bhullar Bh. – A.S. et Gauthier J. A. Mass extinction of lizards and snakes at the Cretaceous – Paleogene boundary // Proceedings of the National Academy of Sciences USA, 2012, V.109, № 52, pp.21396–21401. Ящерицы и змеи на границе мела и палеоцена.

Longrich N. R., Vinther J., Pyron R. A., Pisani D. et Gauthier J. A. Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction // Proceedings of the Royal Society B: Biological Sciences, 2018, V.282, № 20143034, pp.1–10. Происхождение и миграции амфисбен.

Lopatin A. V. Early Paleogene insectivore mammals of Asia and establishment of the major groups of Insectivora // Paleontological Journal, 2006, V.40, № 3, pp.S205–S405.

Lyson T. R., Miller I. M., Bercovici A. D., Weissenburger K., Fuentes A. J., Clyde W. C., Hagadorn J. W., Butrim M. J., Johnson K. R., Fleming R. F., Barclay R. S., Maccracken S. A., Lloyd B., Wilson G. P., Krause D. W. et Chester S. G.B. Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction // Science, 2019, V.366, № 6468, pp.977–983. Восстановление после мел-палеогеновой катастрофы.

Mammalian evolutionary morphology. Eds.: E. J. Sargis et M. Dagosto. Springer, 2008, 440 p.

Matthew W. D. et Granger W. Fauna and correlation of the Gashato Formation of Mongolia // American Museum Novitates, 1925, № 189, pp.1–12.

Mayr G. Paleogene fossil birds. Berlin, Springer-Verlag, 2009, 262 p.

Mayr G. et Scofield R. P. First diagnosable non-sphenisciform bird from the early Paleocene of New Zealand // Journal of the Royal Society of New Zealand, 2014, V.44, № 1, pp.48–56. Australornis isoni.

Mayr G., Scofield R. P., De Pietri V. L. et Tennyson A. J.D. A Paleocene penguin from New Zealand substantiates multiple origins of gigantism in fossil Sphenisciformes // Nature Communications, 2017, V.8, № 1, pp.1–8. Гигантский пингвин Kumimanu biceae.

Mayr G., De Pietri V. L., Love L., Mannering A. A. et Scofield R. P. A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand // Journal of Vertebrate Paleontology, 2018, V.37, № 6, № e1398169, pp.1–19. Пингвин Muriwaimanu tuatahi.

Mayr G., De Pietri V. L., Love L., Mannering A. et Scofield R. P. Leg bones of a new penguin species from the Waipara Greensand add to the diversity of very large-sized Sphenisciformes in the Paleocene of New Zealand // Alcheringa: an Australasian Journal of Palaeontology, 2019, pp.1–8. Пингвин Crossvallia waiparensis.

Mayr G., De Pietri V. L., Love L., Mannering A. et Scofield R. P. Oldest, smallest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds // Papers in Palaeontology, 2019, pp.1–17. Пелагорнис Protodontopteryx ruthae.

McKenna M.C. et Meng J. A primitive relative of rodents from the Chinese Paleocene // Journal of Vertebrate Paleontology, 2001, V.21, № 3, pp.565–572. Древнейший грызун Sinomylus zhaii.

Meng J. et Wyss A. R. Multituberculate and other mammal hair recovered from Palaeogene excreta // Nature, 1997, V.385, pp.712–714. Шерсть многобугорчатых.

Meng J., Wyss A. R., Hu Ya., Wang Yu., Bowen G. J. et Koch P. L. Glires (Mammalia) from the late Paleocene Bayan Ulan locality of Inner Mongolia // American Museum Novitates, 2005, № 3473, pp.1–25.

Meredith R. W., Janecka J. E., Gatesy J., Ryder O. A., Fisher C. A., Teeling E. C., Goodbla A., Eizirik E., Simao T. L.L., Stadler T., Rabosky D. L., Honeycutt R. L., Flynn J. J., Ingram C. M., Steiner C., Williams T. L., Robinson T. J., Burk-Herrick A., Westerman M., Ayoub N. A., Springer M. S. et Murphy W. J. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification // Science, 2011, V.334, pp.521–524.

Mourer-Chauvire C. A large owl from the Palaeocene of France // Palaeontology, 1994, V.37, Part 2, pp.339–348. Древнейшая сова Berruornis orbisantiqui.

Muizon de Ch. et Marshall L. G. Alcidedorbignya inopinata (Mammalia: Pantodonta) from the Early Paleocene of Bolivia: phylogenetic and paleobiogeographic implications // Journal of Paleontology, 1992, V.66, № 3, pp.499–520.

Muizon de Ch. et Cifelli R. L. The “condylarths” (archaic Ungulata, Mammalia) from the early Palaeocene of Tiupampa (Bolivia): implications on the origin of the South American ungulates // Geodiversitas, 2000, V.22, № 1, pp.47–150.

Muizon de Ch., Billet G. et Ladeveze S. New remains of kollpaniine “condylarths” (Panameriungulata) from the early Palaeocene of Bolivia shed light on hypocone origins and molar proportions among ungulate-like placentals // Geodiversitas, 2019, V.41, № 1, pp.841–874.

Murphy W. J., Eizirik E., Johnson W. E., Zhang Y. P., Ryderk O. A. et O’Brien S. J. Molecular phylogenetics and the origins of placental mammals // Nature, 2001, V.409, pp.614–618.

O’Leary M.A., Lucas S. G. et Williamson Th.E. A new specimen of Ankalagon (Mammalia, Mesonychia) and evidence of sexual dimorphism in mesonychians // Journal of Vertebrate Paleontology, 2000, V.20, № 2, pp.387–393.

Orr C. M., Delezene L. K., Scott J. E., Tocheri M. W. et Schwartz G. T. The comparative method and the inference of venom delivery systems in fossil mammals // Journal of Vertebrate Paleontology, 2007, V.27, № 2, pp.541–546. Ядовитость у млекопитающих.

Pascual R., Archer M., Jaureguizar E. O., Prado J. L., Godthelp H. et Hand S. J. First discovery of monotremes in South America // Nature, 1992, V.356, № 6371, pp.704–706. Южноамериканское однопроходное Monotrematum sudamericanum.

Pascual R., Archer M., Ortiz-Jaureguizar E.O., Prado J. L., Godthelp H. et Hand S. J. The first non-Australian monotreme: an early Paleocene South American platypus (Monotremata, Ornithorhynchidae) // Platypus and Echidnas. Ed.: Augee M. L. Sydney, The Royal Zoological Society of New South Wales, 1992, pp.1–14. Южноамериканское однопроходное Monotrematum sudamericanum.

Pascual R., Goin F. J., Balarino L. et Sauthier D. E.U. New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars // Acta Palaeontologica Polonica, 2002, V.47, № 3, pp.487–492. Южноамериканское однопроходное Monotrematum sudamericanum.

Paula Couto de C. Fossil mammals from the beginning of the Cenozoic in Brazil. Condylarthra, Litopterna, Xenungulata, and Astrapotheria // Bulletin of the American Museum of Natural History, 1952, V.99, pp.355–394.

Rich P. V. et Bohaska D. J. The Ogygoptyngidae, a new family of owls from the Paleocene of North America // Alcheringa, 1981, V.5, № 2, pp.95–102. Древнейшая сова Ogygoptynx wetmorei.

Rook D. L. et Hunter J. P. Rooting around the eutherian family tree: the origin and relations of the Taeniodonta // Journal of Mammalian Evolution, 2014, V.21, pp.75–91.

Rose K. D. et Lucas S. G. An early Paleocene palaeanodont (Mammalia,? Pholidota) from New Mexico, and the origin of Palaeanodonta // Journal of Vertebrate Paleontology, 2000, V.20, № 1, pp.139–156. Escavadodon zygus.

Shoshani J. et McKenna M. C. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data // Molecular Phylogenetics and Evolution, 1998, V.9, № 3, pp.572–584.

Slack K. E., Jones C. M., Ando T., Harrison (Abby) G.L., Fordyce R. E., Arnason U. et Penny D. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution // Molecular Biology and Evolution, 2006, V.23, № 6, pp.1144–1155. Пингвин Waimanu manneringi.

Tambussi C. P., Degrange F. J., De Mendoza R. S., Sferco E. et Santillana S. A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl // Zoological Journal of the Linnean Society, 2019, V.186, pp.673–700. Гусь из Антарктиды Conflicto antarcticus.

Toit du C.J., Chinsamy A. et Cunningham S. J. Cretaceous origins of the vibrotactile bill-tip organ in birds // Proceedings of the Royal Society B: Biological Sciences, 2020, V.287, № 20202322, pp.1–10. Вибротактильный орган у Lithornithiformes.

Torres C. R. et Clarke J. A. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions // Proceedings of the Royal Society B: Biological Sciences, 2018, V.285, № 1890, № 20181540, pp.1–8. Обоняние у палеогнатных птиц.

Vajda V. et McLoughlin S. Fungal proliferation at the Cretaceous-Tertiary boundary // Science, 2004, V.303, p.1489. Грибы на границе мела и палеогена.

Vajda V. et McLoughlin, S. Extinction and recovery patterns of the vegetation across the Cretaceous-Palaeogene boundary – a tool for unraveling the causes of the end-Permian mass extinction // Review of Palaeobotany and Palynology, 2007, V.144