Аналогично в исследовании METS (Modelling the Epidemiological Transition Study) не найдено выраженной связи между уровнем суточной активности людей, измеряемым популярными фитнес-трекерами, и реальным среднесуточным уровнем метаболизма. В среднем превышение расхода энергии умеренно активных людей над расходом «лежебок» составляло около 200 ккал. Да, расход энергии в моменте может увеличиваться или уменьшаться весьма значительно, но в среднем за сутки и тем более за больший период времени люди расходуют приблизительно один и тот же уровень энергии с учетом пола, веса, роста и возраста. К сожалению, пока не совсем ясно, за счет каких механизмов человеческому организму удается экономить и в итоге выравнивать средний расход энергии.
Предполагается, что, с одной стороны, эволюционно у человека закрепился вообще несколько более высокий уровень метаболизма, чем у эволюционных родственников. С учетом размеров тела, уровней физической активности, доли жира и прочих факторов человек потребляет и расходует за день на 400 ккал больше, чем обыкновенный и карликовый шимпанзе, а тем более гориллы и орангутаны. Одной из причин могут быть увеличенные расходы на мозговую деятельность, связанные, например, с повышенной социализацией человека. Возникновение у человека специфической психологической патологии – депрессии – иногда связывается с чрезмерным расходом энергии вследствие увеличения мозговой деятельности, направленной на решение проблем социализации, то есть является важным адаптационным (эволюционным) приобретением (Andrews P. W. and Thomson J. A. Jr., 2009). Причем деятельности в итоге безрезультативной, ведущей к бесконечному «пережевыванию» ситуации, руминированию (рис. 9). Но, как считает профессор психологии из Университета Вандербилда Стивен Холлон, «мучительные самокопания – не следствие депрессии, а причина ее развития» (Stix G., 2021). Кроме того, крайне важным, но не бесспорным является и сам тезис о болезни (а депрессия, безусловно, болезнь) как возможном инструменте адаптации (БОН: глава XIV).
С другой стороны, у людей сформировались механизмы, позволяющие пиковое увеличение расхода энергии компенсировать последующим «скрытым» сокращением уровня метаболизма. Увеличение физической активности, возможно, дает сигнал сокращению расхода энергии во внутренних метаболических процессах, например связанных с поддержанием воспаления, пищеварительной деятельности и прочих некритических процессов, но не мозговой деятельности, для поддержания которой, напротив, стимулируются механизмы, обеспечивающие ее работоспособность в условиях ограничивающихся ресурсов. Возможно, у людей «зажатый» эффект иризина в отношении белой жировой ткани является проявлением общей стратегии метаболизма на экономию ресурсов, затрудняющим простое разбазаривание драгоценной энергии через теплообразование за счет «сбрасывания» протонного градиента по UCP-зависимым каналам. Человеческий организм оказывается более толерантным к «контрреволюционному кулацкому элементу» – белой жировой ткани, чем советская власть. Для стабилизации энергетического баланса он использует более либеральную политэкономическую линию жесткой государственной экономии и стимулирования предложения, то есть гарантии стабильного поступления энергии с пищей за счет поведенческих механизмов: совместной охоты на крупных животных, обобществления ресурсов, разделения общественного труда для выделения ресурсов для предварительной обработки пищи с целью ее лучшей усвояемости и т. д.
Рис. 9. Чрезмерный расход энергии при развязывании «узлов социализации» как возможная причина депрессии
То, что физические упражнения у человека сами по себе практически не влияют на снижение веса, совершенно не означает, что они не нужны; наоборот, они критически необходимы для поддержания нашего здоровья.
Понцер сравнивает необходимость движения для людей с пассивным дыханием у акул: у этих хищников в процессе эволюции выработалось крайне агрессивное пищевое поведение; охотясь, они без остановки плавают и днем, и ночью. Постоянное движение вперед обеспечивает постоянное заглатывание воды и пропускание ее через жабры, что эволюционно привело к утрате развитой жаберной мускулатуры. Это позволяет экономить энергию, но ведет к необходимости постоянного движения: остановившись, многие виды акул «задыхаются». Последствия гиподинамии для человека гораздо менее стремительны, но не менее губительны. Однако, в отличие от акул, движение еще не стало для человека комфортным состоянием, подавляющему большинству из нас приятнее находиться в состоянии умеренного покоя. По выражению палеонтолога Нила Шубина, в строении и функционировании каждого из нас можно увидеть наших эволюционных предков, в анатомии, например «внутреннюю рыбу» (Neil Shubin, 2008). В свою очередь, по мнению Германа Понцера, «внутренняя обезьяна» в нашей физиологии зовет нас в потерянный рай жизни в джунглях, где, как и наши двоюродные братья шимпанзе и гориллы, можно 8–10 часов в день тратить на отдых, груминг и еду, спать 9–10 часов, бродить взад-вперед не более 3 км и пролезать вверх-вниз не более 100 м. Но почему-то около 2 млн лет назад наши непосредственные предки-гоминины буквально выбежали из этого рая. И только около 200 лет назад человечество начало снова физически «приостанавливаться». Для застрявшей в комфорте части человечества движение снова становится жизненно необходимым хотя бы для того, чтобы не набирать вес в ожирении (и это не противоречит тому, что физические упражнения сами по себе, без сокращения диеты, плохо справляются с УЖЕ накопившимся ожирением), предотвращать кризис иммунной системы, особенно в пожилом возрасте, поддерживать когнитивную функцию, противостоять, в конце концов, сердечно-сосудистым заболеваниям – главной причиной смертности в XXI веке.
Толкаем гири, но не забываем про соседей
Однако продемонстрированное влияние физических упражнений как горметического стресса на состояние здоровья умножается на 0 или на 10 одним очень важным фактором, находящимся в настоящее время в фокусе внимания сотен исследовательских групп – состоянием микробиома, в первую очередь микробиома кишечника. Микробиом может в значительной степени модулировать физиологическую результативность физических упражнений через ряд сравнительно хорошо исследованных механизмов, связанных, например, со стимуляцией вегетативной нервной системы. Реакция на стресс, в том числе горметический, определяется статусом этой системы, находящейся под постоянным влиянием оси взаимного влияния «мозг-кишечник», где роль ведущего канала взаимодействия играет блуждающий нерв. Функциональность этой оси также «администрируется» через выработку нейротрансмиттеров, таких как гамма-аминомасляная кислота (ГАМА), нейропептид Y, серотонин, а также биологически сверхактивных короткоцепочечных жирных кислот, и оборот этих соединений в значительной степени контролируется кишечной микрофлорой (БОН: глава VIII). Фундаментально кишечная микрофлора также контролирует всасывание питательных веществ, то есть, по сути, общее поступление энергии в организм хозяина.
Менее исследованным, но более интересным, и, на мой взгляд, гораздо более многообещающим в силу возможного синергического эффекта на здоровье является обратное влияние физических упражнений на состав и состояние микрофлоры. Наиболее часто в результате систематических физических упражнений (см. обзор Clark A., Mach N., 2016) исследователи обнаруживают рост микробного разнообразия кишечника, снижение соотношения Firmicutes/Bacteroidetes (хотя есть и прямо противоположные результаты), увеличение содержания бактерий рода Akkermansia и бактерий-производителей масляной кислоты, то есть всего того, чего энтузиасты главенства кишечного микробиома в его симбиозе с человеком пытаются достичь самыми разнообразными и неординарными способами, включая пересадку кала от «здоровых» индивидуумов больным.
В качестве предполагаемых механизмов различные группы исследователей называют ускорение транзита пищи через ЖКТ (Oettlé GJ, 1991), изменение профиля желчных кислот (Hagio M. et al., 1985), увеличение выработки короткоцепочечных жирных кислот (Cerda B., 2016), модулирование сигнальных путей клеточных иммунных toll-like рецепторов (Fracaux M., 2009; Frosali S., 2015), изменение уровня защитных секреторных иммуноглобулинов А (Viloria M. et al., 2011), количества В-лимфоцитов и CD4+ Т-лимфоцитов, и даже, парадоксальным образом, через вызванную нагрузками потерю веса (Turnbaugh P. J. et al., 2006). Остается вопрос, какой из механизмов в этой сложной комбинации эффектов все-таки является ведущим. Связующим звеном взаимного влияния физических упражнений на кишечный микробиом и микробиома на эффективность упражнений может оказаться, например, обнаруженное торможение выработки белков теплового шока в клетках кишечного эпителия в результате длительных упражнений, что ведет к упрочению плотных связей между ними и снижению проницаемости кишечника (Dokladny K. et al., 2016; Mailing L. J., 2019).
Не будет удивительным, что взаимное положительное влияние микрофлоры и клеток кишечника в значительной степени опосредованно митохондриями последних, что особенно проявляется в ходе физических нагрузок (Clark A. and Mach N., 2017). Так, микрофлора снабжает митохондрии их любимыми короткоцепочечными жирными кислотами (КЦЖК) – масляной (бутиратом) и уксусной (ацетатом). Благодаря бутирату «накачанные» митохондрии активнее вырабатывают PGC-1α и АМРК, что в данном случае «успокаивает» провоспалительный настрой клетки, связанный с NF-кВ, и стимулирует биогенез митохондрий (нарастание их количества и массы). Кроме того, вместе с вторичными желчными кислотами КЦЖК позволяют выстроить в просвете кишечника оптимальный окислительно-восстановительный потенциал, необходимый как для наилучшей производительности ЭТЦ, так и самочувствия кишечных бактерий. Благодаря оптимизированной функции митохондрий, в свою очередь, улучшаются иммунные свойства слизистой кишечника, ее способность противостоять возможному вторжению патогенов. Очень важным комплексным эффектом нормально функционирующих митохондрий в клетках кишечной стенки является нормализация ее проницаемости.