Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать — страница 25 из 93

Bak P., Tang C. and Wiesenfeld K., 1987). ОП!

Выражение «строить на песке» обычно относится к конструкциям, чаще мыслительным, которые представляются неустойчивыми, крайне хрупкими и ненадежными. Выглядит парадоксальным, но одна из самых обоснованных теорий возникновения и эволюционирования сложности возникла практически буквально на песке: одной из ее первых и до сих пор наиболее часто упоминаемых и используемых моделей служит модель кучи песка. Модель достаточно удобна и наглядна, что позволит воспользоваться ею и для демонстрации явлений эволюционного развития, болезней и здоровья, то есть основных предметов рассмотрения данной книги.

Представим себе черноморское побережье Грузии, летний пляж где-нибудь в районе гурийского поселка Уреки. Дети строят пирамиду из местного замечательного серо-черного «магнитного» песка. И мы для математической модели тоже возьмем этот серо-черный, но слегка идеализированный песок, состоящий из одинаковых песчинок с достаточно большим сцеплением между друг другом, но без инерции движения (рис. 12).


Рис. 12. Куча песка – модель самоорганизованной критичности


Сверху по одной ссыпаются песчинки. При этих условиях постепенно образующийся наклон Z определяет состояние кучи как системы: если локальный наклон становится больше некоего порога устойчивости, песчинки пересыпаются ниже, где могут остановиться, но могут и продолжить движение, вовлекая в движение новые песчинки. Но пока куча мала, воздействие одной песчинки не может оказать влияние на кучу в целом: она представляет собой пока просто совокупность отдельных песчинок при отсутствии между их значительным количеством существенных связей.

Если куча вырастает и средний наклон достигает некоего значения Zc, то он уже не может расти дальше – среднее количество добавляемого песка соответствует его количеству, падающему через край. Система достигает стационарного состояния: среднее количество песка и средняя крутизна постоянны по времени. И для поддержания такого баланса части системы должны уже быть взаимосвязаны. Время от времени возникает сход лавины – ток песка J, непропорционально увеличивающийся с ростом Z. Физически это можно назвать непрерывным фазовым переходом, в котором наклон Z выполняет роль управляющего параметра, а ток песка становится параметром порядка. Причем как при значениях Z<Zc, так и значениях Z>Zc система обладает устойчивым, некатастрофическим поведением, но принципиально отличающимся: в первом случае она хаотична, во втором – более упорядочена.

В отношении открытой динамической системы сложно говорить о точных значениях энтропии, но можно полагать, что в первом случае вклад системы в общий рост энтропии увеличивается, а во втором – уменьшается. При значениях Z около Zc система приобретает новое свойство критического состояния: система в общем находится в стационарном состоянии, но если до этого любая новая песчинка катилась только по собственной локальной динамике, то теперь она может вызвать лавину любого размера – от совсем маленькой, до «катастрофической», то есть динамика приобретает всеобъемлющий характер, и в этом смысле в этом момент система «самоорганизуется» или переходит в состояние «самоорганизованной критичности». И эту всеобъемлющую динамику невозможно никоим образом предсказать на основании свойств отдельных песчинок. Распределение лавин по объему будет следовать степенной динамике, с заметной вероятностью «катастрофических» событий, но останется абсолютно непериодическим и непредвиденным. В целом это поведение можно описать как прерывистое равновесие, когда спокойные периоды роста сменяются лавинными событиями. В определенном смысле эти фазы можно сопоставить с чередованием динамических и хаотических стадий в модели Д. С. Чернавского.

Однако, в отличие от этой модели, куча песка в модели самоорганизованной критичности является открытой динамической системой – в нее входят и из нее выходят песчинки, через систему идет поток энергии: при падении и скатывании песчинок их потенциальная энергия преобразуется в кинетическую, которая при остановке песчинок рассеивается, переходит в тепло, частично поглощаемое кучей, частично рассеивающееся, происходит диссипация энергии. Этот поток энергии способен достаточно долго поддерживать критическое состояние системы.

Данная модель обладает устойчивостью в отношении возможных модернизаций, изменений параметров системы, то есть грубостью. И это является важнейшей особенностью концепции самоорганизованной критичности, принципиально отличающей ее от большинства других модельных концепций. Изменение какого-то из параметров, например замена «сухого» песка на «влажный», то есть изменение силы сцепления между частицами приведет к некоторым изменениям в масштабе времени и масштабе лавин, но в итоге все также вернет систему в критическое состояние. Расстановка в куче искусственных заслонов также изменит внешний вид кучи, временно – ее динамику, но в итоге куча неизбежно вернется в критичность.

Несмотря на сравнительную простоту математического описания этой физической модели (например, в понятиях клеточных автоматов (Dhar D. and Ramaswamy R., 1989), как и большинства других моделей самоорганизованной критичности, создание математической аналитической теории, способной предсказать поведение системы и дать достаточно глубокое понимание сути происходящего, как, например, в теории динамического хаоса или фазовых переходов в динамических системах, оказывается крайне сложным.

Поэтому пока приходится довольствоваться скорее эмпирическими теориями самоорганизованной критичности, позволяющих тем не менее достаточно удовлетворительно описывать как физические модели, так и многие природные и даже социальные явления. Всех их, как уже указывалось, объединяет один ряд исключительно важных признаков:

1. Грубость, или устойчивость системы к изменениям параметров;

2. Следование степенному закону распределения событий, с «тяжелыми хвостами» возможных событий чрезвычайно большого масштаба;

3. Масштабная инвариантность или фрактальность, придающая системе способность иерархического самоповторения.

Можно предполагать, что в скором времени аналитический аппарат самоорганизованной критичности будет достаточно разработан, чтобы показать, как есть основания надеяться, глубинную общность названных концепций спонтанной самоорганизации и динамического хаоса, включая информационные и энтропийные аспекты этих теорий. На данный момент мы имеем больше вопросов, чем ответов в отношении ключевых свойств динамической критически самоорганизованной системы, способных сделать систему живой как в переносном, так и прямом смысле: например, что на самом деле в модели СОК является постоянным элементом системы, обладающим памятью макросостояния? В песочной модели, например, песчинки не являются постоянными элементами системы: они непрерывно входят и выходят из нее, обладая, похоже, лишь скоротечной микроинформацией (обусловливая тем не менее возможность постоянного обновления тезауруса системы). Возможно, элементами системы являются некие динамические кластеры, не имеющие явного «физического» воплощения, но возле контуров которых, как по руслам, и проходит обвал? Последнее предположение, хоть и образное, но выглядит вполне логичным: очевидно, что, если в куче есть кластеры, взаимодействия в которых отличаются от средних по системе, разломы и обвалы будут проходить возле них.

Клеточные автоматы как модели жизни

А. В. Подлазов (2002) обнаруживает в многочисленных моделях СОК важную общность: все они строятся на одной и той же схеме, основанной на динамическом взаимодействии двух разнонаправленных процессов. Первый можно обозначить как условно естественный путь развития элементов системы (в модели песка, например, связанный, очевидно, с силами трения и ведущий к увеличению локального наклона кучи), второй – путь селекции или отбраковки (в модели песка – совокупность сил, ведущих к осыпанию).

Как указывалось, математический аппарат систем СОК весьма близок (и, как указывалось выше, достаточно сложен), то есть в теоретическом плане изменение физической модели не имеет принципиальных последствий. Если же взять для дальнейшего рассмотрения более «математические» модели, например на основе клеточных автоматов, то последствия изменений могут оказаться более существенными. В одной из таких сравнительно простых моделей, созданной Д. Дхара и Р. Рамасвами, куча песка представлена двумерной решеткой (в оригинале – гексагональной), со сдвигом слоев на ½ ячейки, так что каждая ячейка одного слоя граничит с двумя ячейками верхнего или нижнего слоя (рис. 13) – условно уровнями кучи.


Рис. 13. Клеточный автомат – симулятор песочной кучи


Числа в ячейках отражают наклон кучи (0 – нет наклона, >0 – есть наклон), но если наклон больше 1 (то есть =2), то куча «осыпается»: две нижние ячейки приобретают по единице, сама ячейка, соответственно, «обнуляется» (как часто бывает, временно). «Куча» цилиндрическая, то есть края решетки замкнуты и песчинка с края на рисунке переходит на противоположный край. Снизу ячеек нет, и единицы – песчинки «вываливаются» из кучи. На решетку справа в случайную ячейку верхнего слоя попадает единица-песчинка (+1). После этого ячейка переходит в возмущенное состояние (решетка справа), начинается цепная реакция осыпаний, завершающаяся стадией релаксации. Ячейки, пережившие осыпание на решетке справа, отмечены серым цветом; получившие единицы-песчинки, но сохранившие устойчивость, – светло-серым.

В клеточном автомате Д. Дхара и Р. Рамасвами размер лавины может быть описан площадью осыпания (количеством осыпавшихся ячеек) или длительностью (количеством вовлеченных слоев). Компьютерное моделирование показывает, что распределение лавин по площади и глубине имеет отчетливо степенной вид, особенно показательный на очень больших решетках, что характеризует данную систему как склонную к катастрофам, то есть нахождению в состоянии самоорганизованной критичности.